Semester-Wise Programme structure for B.Sc. Physics [4 year]								
Sr.	Yea	ar 1	Year 2		Year 3		Year 4	
No.	Semester 1	Semester 2	Semester 3	Semester 4	Semester 5	Semester 6	Semester 7	Semester 8
1	ELECTRICITY AND MAGNETISM-I (PHY10) [CU:4; L-3, P-1] {CC}	ELECTRICITY AND MAGNETISM-II (PHY112) [CU:4; L-3, P-1] {CC}	SPECIAL THEORY OF RELATIVITY [CU:4; L-3, P- 1] {CC}	ELECTRO- MAGNETIC THEORY [CU:4; L-3, P-1] {CC}	NUCLEAR PHYSICS [CU:6; L-4, P-2] {CC}	PARTICLE PHYSICS [CU:6; L-4, P-2] {CC}	QUANTUM MECHANICS (CC H1) [CU:4, L-4_, P- 0] {CCH1}	ADVANCED MATHEMATICAL METHODS (Course Code) [CU:4, L-4, P-0] {CCH4}
2	Mechanics (PHY105) [CU:4, L-3, P-1] {CC}	OSCILLATONS AND WAVES (PHY111) [CU:4; L-3, P-1] {CC}	ELEMENTS OF MODERN PHYSICS [CU:4; L-3, P- 1] {CC}	THERMAL PHYSICS [CU:4; L-3, P-1] {CC}	SOLID STATE PHYSICS [CU:6; L-4, P-2] {CC}	STATISTICAL PHYSICS [CU:6; L-4, P-2] {CC}	CLASSICAL MECHANICS (Course Code) [CU:4; L-4, P-0] {CCH2}	CLASSICAL ELECTRO- DYNAMICS (Course Code) [CU:4; L-4, P-0] {CCH5}
3				QUANTUM PHYSICS [CU:4; L-3, P-1] {CC}	ANALOG SYSTEMS AND APPLICATIONS [CU:6, L-4, P-2] {SE}	DIGITAL SYSTEMS AND APPLICATIONS s [CU:6, L-4, P-2] {SE}	STATISTICAL MECHANICS (Course Code) [CU:4; L-4, P-0] {CC H3}	
4	MATHEMATICAL PHYSICS-I (PHY 104) [CU:4; L-3, P-1]	MATHEMATICAL PHYSICS-II [CU:4; L-3, P-1]	OOPs USING C++ [CU:4; L- 3, P-1]	PROGRAMMING IN PYTHON [CU:4; L-3, P-1]	DATA SCIENCE AND ANALYTICS [CU:6; L-4, P-2]	ASTRO/BIO/NANO [CU:6; L-4, P-2]	NUMERICAL METHODS AND ANALYSIS [CU:4; L-2, P-2]	COMPUTATIONAL PHYSICS (Course Code) [CU:4; L- 2, P-2] {CCm8}
5	VAC: 3Cr EVS-2Cr BS-1Cr	VAC: 3Cr EVS-2Cr BS-1Cr					DSE: 4Cr ELECTRONICS [CU:4; L-4, P-0]	RESEARCH METHODOLOGY (Course Code) [CU:4; L-4, P-0] {DSE}
6	AECC : 2Cr FBL-1Cr HCP/Punjabi- 1C	AECC : 2Cr FBL-1Cr HCP/Punjabi- 1Cr	AECC : 2Cr CS-2Cr	AECC : 2Cr CS-2Cr			DSE2: 4 Cr PHYSICS LAB	RESEARCH PRO[CU: 4, L-0,P P-4]

Program structure for B.Sc. Physics- 4 years [Hons. with Research]

7	SEC1: 3Cr Basic of Computational physics (PHY 106)	SEC2: 3Cr Renewable energy & Harvesting CU:3, L-2, P-0] {SEC}	SEC3: 3Cr Basic Instrumentation Skill / Electrical circuits & Network Skills [CU:3, L-2, P- 1] {SEC	SEC4: 3Cr Basic Instrumentation Skill / Electrical circuits & Network Skills [CU:3, L-2, P-1] {SEC				
8	General Chemistry [CU:3, L-2, P-1] [MD]	Weather Forecasting [CU:3, L-3, P- 0][MD]	MOOC					
				4 Cr of Internship				
Credits	23	23	20	21	22	22	24	20
Total Credit: Credit Layout as per Curriculum and Credit Framework Guidelines - UGC 20					es - UGC 2022		Total Credits - 179* [Including 4 Cr of Internship]	
	AC	Allied C	ourse					
	AEC	Ability Enhance	ement Course					
	CC	Core Co	ourse					
	GE	General E	Elective					
	OE	Open El	ective					
SC Skill component								
SE Specialization Elective Course								
SEC Skill Enhancement Course								
VAC Value Added Course								
	моос	моос с	ourses					

List of MOOC Courses:

Sem.	MOOC COURSES	Lecture (L)	Tutorial (T)	Practical P	Contact Hour	Credits	<u>Core</u>
MOOC- I	Introduction to LASERS	3	0	0	3	3	
MOOC- II	Applied Optics	3	0	0	3	3	

Core Course (PH): Electricity and Magnetism I

L	Т	Р	Total Credits
3	0	1	4

Electricity and Magnetism I	Theory:54 h,	
	Pract:36h	

Course Outcomes

CO1	Explanation on the knowledge of mathematics required to learn electrostatics
	and magnetostatics
CO2	Explanation of differential analysis of the electric force and field vectors as well
	as on scalar quantities such as potential and potential energy
CO3	Articulate knowledge of electric current, resistance and capacitance in terms of
	electric field and electric potential. Demonstrate a working understanding of
	capacitors
CO4	Understand the dielectric properties, magnetic properties of materials and the
	phenomena of electromagnetic induction

CO5	
	Understanding on magnetostatics and its applications

Unit-1-Mathematical tools	Lectures:
	13 h

Complex Numbers : Real and imaginary parts, complex plane, polar representation, conjugation, Vector Algebra, Vector Calculus : scalar and vector fields, Derivatives, gradient, Del operator, divergence and curl of a vector field, integrals : line, surface and volume, The Fundamental Theorem: Gauss, Stokes and Green, Introduction to Spherical and Cylindrical Coordinates, Dirac Delta Function

Unit-2- Electrostatics	Lectures:
	14 h

Concept of charge, Coulomb's Law for point charges and continuous distribution of charges, Electric field (due to point charges, group of point charges, distributed charges) and field lines, Electric flux, Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry, differential form of Gauss law, conservative nature of electric field, Electric potential and its relation with electric field and electric potential energy, Laplace's and Poisson equations, Electric Field and potential of a dipole. Force and Torque on a dipole, Electrostatic energy of the system of charges, charged sphere.

Unit-3- Introduction to Magnetostatics			
	14 h		

Lorentz Force Law, Biot-Savart Law and its simple applications: straight wire, circular loop, solenoid and toroid, cyclotron and cycloid motion, work done by magnetic force, force between parallel current carrying wires, Force on Current-carrying Conductor Placed in a Magnetic Field, Torque on a current Loop, Current Loop as a Magnetic Dipole,. Ampere's Circuital Law and its applications, curl and divergence of B, Vector Potential, Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Magnetic materials (Dia, para and ferro), Superconducting materials

Unit-4- Electromagnetic Induction	Lectures: 13 h
Faraday's law of electromagnetism and their differential forms, directi	on of induced

e.m.f., self and mutual inductance, coefficient of coupling, inductors in series and in parallel, energy stored in magnetic field, current growth and decay in inductive circuits, eddy currents, Displacement currents, introduction to Maxwell's equations

Practicals

72 hours

Objective: The aim of this section of the course is to build an understanding about various components of an electrical circuit and to develop skill to measure the related physical quantities.

- Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and I Checking electrical fuses.
- To determine an unknown Low Resistance using Potentiometer.
- To determine an unknown Low Resistance using Carey Foster's Bridge.
- Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- To determine the value of an air capacitance by de-Sauty Method and to find permittivity of air. To determine the dielectric constant of a liquid.
- To verify the Thevenin and Norton theorems.
- To verify the Superposition, and Maximum power transfer theorems.
- To determine self-inductance of a coil by Anderson's bridge.
- To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- Determine a high resistance by leakage method using Ballistic Galvanometer.
- To determine self-inductance of a coil by Rayleigh's method.
- To determine the mutual inductance of two coils by Absolute method.
- To determine the frequency of A.C. mains using sonometer.
- To measure iophys e.m.f. of a thermocouple as a function of temperature and find inversion temperature.
- To study C.R.O. as display and measuring device by recording sines and square waves, output from a rectifier, verification (qualitative) of law of electromagnetic

induction and frequency of A.C. mains.

- To plot the Lissajous figures and determine the phase angle by C.R.O.
- To study B-H curves for different ferromagnetic materials using C.R.O.
- Determination of low inductance by Maxwell-Wein bridge.
- Studies based on LCR Board: Impedance of LCR circuit and the phase and between voltage and current.

Text/Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Edward M. Purcell	Electricity and Magnetism	Tata McGraw- Hill	1986	
D.J. Griffiths	Introduction to Electrodynamics	Benjamin Cummings	1998	
J.H. Fewkes & J. Yarwood	Electricity and Magnetism	Oxford Univ. Press	1991	
R.P. Feynman, R.B. Leighton, M. Sands	Feynman Lectures Vol.2	Pearson Education	1981	
Matthew N.O. Sadiku	Elements of Electromagnetics	Oxford University Press	2010	

S. Mahajan Electricity, Magnetism & and Electromagnetic Theory Choudhury	Tata McGraw	2012	
--	----------------	------	--

Course Title: PHY105 (Mechanics)

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

CO1 Students must get the ability to understand the fundamentals of dynamic the revision of Newton's laws of motion and their applications in v	ioo with		
the revision of Newton's laws of motion and their applications in v	ics with		
\mathbf{T} = \mathbf	various		
advanced dynamical situations. The ability to explain different reference	advanced dynamical situations. The ability to explain different reference frames		
and accordingly the various conservation theorems			
CO2 Understanding the transition from single particle to the system of pa	articles,		
concept of centre of mass and collisions			
CO3 Learning of the expressions of Moment of Inertia for different- different un	niformly		
distributed mass systems with the application of parallel and perpendicul	ılar axis		
theorems			
CO4 Understanding the general properties of matter such as fluid motion (pr	rinciple		
and governing equations), elasticity, modulus of elasticity and rigidity			
CO5 Understanding of central force field and gravitational law to define the mo	otion of		
CO5 Understanding of central force field and gravitational law to define the mo planets and satellites	otion of		
CO5 Understanding of central force field and gravitational law to define the mo planets and satellites Course Contents/syllabus:	otion of		
CO5 Understanding of central force field and gravitational law to define the mo planets and satellites Course Contents/syllabus:	otion of		

Reference frames. Inertial frames; Review of Newton's Laws of Motio Galilean transformations; Galilean invariance. Momentum of variable-ma system: motion of rocket. Motion of a projectile in Uniform gravitational fie Dynamics of a system of particles. Centre of Mass. Principle of conservation momentum. Impulse.	
Work and Energy: Work and Kinetic Energy Theorem. Conservative and no conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non- conservative forces. Law Conservation of Energy, Collisions: Elastic and inelastic collisions betwee particles. Centre of Mass and Laboratory frames	
Unit II: Rotational Dynamics	13
Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation.	
Unit III:Fluid Motion & Elasticity	13
Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. Hooke's law Stress strain diagram, Elastic moduli, Relation between Elastic constants. Twisting torque on a Cylinder or Wire	
Unit IV: Gravitation and Central Force Motion	14
Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).	

Practicals	72
	hours

List of Experiments -with basic instructions

- Use of Vernier callipers, Screw gauge, Spherometer, Barometer, Sphygmomanometer, Lightmeter, dry and wet thermometers, TDS/conductivity meter and other measuring instruments based on applications of the experiments. Use of Plumb line and Spirit level.
- To study the random error in observations.
- Determination of height (of inaccessible structure) using sextant.
- To study the Motion of Spring and calculate (a) Spring constant, (b) g and © Modulus of rigidity.
- To determine the Moment of Inertia of a Flywheel.
- To determine g and velocity for a freely falling body using Digital Timing Technique.
- To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- To determine the value of g using Kater's Pendulum.
- To study the variation of time period with distance between centre of suspension and centre of gravity for a bar pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- Determination of coefficient of viscosity of a given liquid by Stoke's method. Study its temperature dependence.
- To determine the Young's Modulus of a Wire by Optical Lever Method.
- To determine the Young's modulus by (i) bending of beam using traveling microscope/laser, (ii) Flexural vibrations of a bar.
- Determination of modulus of rigidity by (i) dynamic method Maxwell's needle/Torsional pendulum; (ii) Forced torsional oscillations excited using electromagnet.
- To determine the elastic Constants of a wire by Searle's method.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Kittel, C. and Knight, W.	Mechanics, Berkeley Physics, vol.1	Tata McGraw- Hill	2007.	978- 0521198110
Feynman, Leighton and M. Sands	Feynman Lectures, Vol. I	Pearson Education	2008	9780465023820
Kleppner, D Kolenkow, R J	An introduction to mechanics	Mcgraw hill	2017	978- 0521198110
Mathur, D S	Mechanics	S Chand	1981	9788121905992
Flint, B L Worsnop, T	Advanced practical physics for students	Asia Publishing House	1971	978- 0423738902

Course Title: PHY104 (Mathematical Physics-I)

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

CO1	Revision of vectors, calculus, vector calculus, probability and statistical
	distribution functions
CO2	Understand the differential equation applications to many Physics problems
CO3	Appreciates the physics behind the vector differentiation, vector integrations and
	its analogy
CO4	Learning of Cartesian, spherical and cylindrical coordinate systems
CO5	Introduce the concept of Dirac delta functions which have applications in
	quantum mechanics

	Time (H)
Unit I: Vectors, Limits and Probability	8
Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area & volume respectively. Scalar and Vector fields. Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only).	
Unit II: Introduction to Probability	4
Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing.	
Unit III: Ordinary Differential Equations	15
First Order and Second Order Differential equations: First Order Differential	

Practicals	36
Definition of Dirac delta function. Representation as limit of a Gaussian functi and rectangular function. Properties of Dirac delta function	¢
Unit-6- Dirac Delta function and its Properties	3
Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, C and Laplacian in Cartesian, Spherical and Cylindrical Coordinate System Components of Velocity and Acceleration in Cylindrical and Spheric Coordinate Systems.	
Unit-5- Orthogonal Curvilinear Coordinates	6
Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobia Notion of infinitesimal line, surface and volume elements. Line, surface a volume integrals of Vector fields. Flux of a vector field. Gauss' divergen theorem, Green's and Stokes Theorems and their applications (no rigoro proofs).	I G
Vector Differentiation: Directional derivatives and normal derivatives. Gradie of a scalar field and its geometrical interpretation. Divergence and curl of vector field. Del & Laplacian operators. Vector identities.	F
Unit IV: Vector Calculus	18
more than one variable: Partial derivatives, exact and inexact differential Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers	
Equations and Integrating Factor. Homogeneous Equations with consta coefficients. Wronskian and general solution. Statement of existence Uniqueness Theorem for Initial Value Problems. Particular Integr Calculus of functions	3

- Introduction: Computer architecture and organization, memory and Input/output devices.
- Basics of scientific computing: Binary and decimal arithmetic, Floating point

numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow- emphasize the importance of making equations in terms of dimensionless variables, Iterative methods

- Errors and error Analysis: Truncation and round off errors, Absolute and relative errors, Floating point computations.
- C & C++ Programming fundamentals: Introduction to Programming, constants, variables and data types, operators and Expressions, I/O statements, scanf and printf, c in and c out, Manipulators for data formatting, Control statements (decision making and looping statements). (If statement. If else Statement. Nested if Structure. Else-if Statement. Ternary Operator. Goto Statement. Switch Statement. Unconditional and Conditional Looping. While Loop. Do-While Loop. FOR Loop. Break and Continue Statements. Nested Loops), Arrays (1D & 2D) and strings, user defined functions, Structures and Unions, Idea of classes and objects.
- Programs: Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search
- Random number generation: Area of circle, area of square, volume of sphere, value of pi (π).
- Solution of Algebraic and Transcendental equations: Using Bisection, Newton Raphson and Secant methods find the Solution of linear and quadratic equation and solve α =tanα;^{l = l_o [^{ind}_α]² in optics}
- Solution of Ordinary Differential Equations (ODE) :First order differential equation, Radioactive decay, Current in RC, LC circuits with DC source, Newton's law of cooling, Classical equations of motion.
- Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods:
- Interpolation: Evaluation of trigonometric functions e.g. sin θ, cos θ, tan θ etc. using Newton Gregory Forward and Backward difference formula.
- Numerical differentiation and Integration: Using Forward and Backward difference formula for differentiation and Trapezoidal and Simpson rules for integration and Monte Carlo method solve the following problems.
- Given Position with equidistant time data to calculate velocity and acceleration and vice versa.

- Find the area of B-H Hysteresis loop
- Runge Kutta Method Problems :
- Solve the coupled differential equations
- $\frac{dx}{dt} = y + x \frac{x^3}{3}; \quad \frac{dy}{dt} = -x$ for four initial conditions
- x(0) = 0, y(0) = -1, -2, -3, -4.
- Plot x vs y for each of the four initial conditions on the same screen for $0 \le t \le 15$
- The differential equation describing the motion of a pendulum is. $\frac{d^2\theta}{dt^2} = -\sin\theta$ 0
- $\mathbf{t}_{dt^2}^{d^2\theta} = -\sin\theta$ he pendulum is released from rest at an angular displacement \langle and | $\sqrt{(0)} = 0$. Solve the equation for $\alpha = 0.1$, 0.5 and 1.0 and plot \sqrt{as} as a function of time in the range $0 \le t \le 8\pi$. Also plot the analytic solution valid for small ∖(sin ∖=

Author	Title	Publisher	Year of publication	ISBN
Arfken, G B & Weber, F E	Mathematical Methods for Physicists	Elsevier	7 th edition,2013	9780120598328
K.F.Riley & M.P.Hobson	Essential Mathematical Methods	Cambridge Univ. Press	2011	9780521761147
Zill, D G and Wright, W S	Advanced Engineering mathematics	Jones and bartlett Learning	5 Ed., 2012,	9780471021407
Atkinson, K E	Elementary Numerical Analysis	Wiley India	3 Ed., 2007	9780471433378
Walker, Darren	Computational Physics	Scientific Int. Pvt. Ltd.	2015	9781942270737

Reference Books:

Author	Title	Publisher	Year of publication	ISBN
C.L.Arora	Refresher Course in B.Sc. Physics (Vol I)	S Chand & Company	2010	978- 8121904650
C.L.Arora	Refresher Course in B.Sc. Physics (Vol II)	S Chand & Company	2010	978- 8121904667
C.L.Arora Refresher Course S in B.Sc. Physics Co (Vol III)		S Chand & Company	2013	978- 8121906265

Course Title: ENV101 (Environmental Studies-I)

L	Т	Р	Total Credits
2	0	0	2

	Teaching hours
Unit-1- Multidisciplinary nature of environmental studies	8 h
Multidisciplinary nature of environmental studies: Definition, scope and importance; components of environment –atmosphere, hydrosphere, lithosphere and biosphere. Concept of sustainability and sustainable development.	
Unit-2-Natural Resources	10 h
Natural resources: Land resources and land use change, land degradation, soil erosion and desertification. Deforestation: causes and	
impacts due to mining, dam building on environment, forests, biodiversity	

and tribal population. Water Resources-Use and over-exploitation of surface and groundwater, floods, drought, conflicts over water	
(international and inter-state). Heating of earth and circulation of air; air	
mass formation and precipitation. Energy resources- renewable and non-	
renewable energy sources, use of alternate energy sources, Growing	
energy needs, Case studies	
Unit-3- Ecosystems	9 h
Ecosystem: What is an ecosystem; Structure and function of an	
ecosystem; Energy flow in the ecosystem; Food chains, food webs and	
ecological succession. Case studies of the following ecosystems: Forest	
ecosystem, Grassland ecosystem, Desert ecosystem Aquatic	
ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).	
Unit-4- Biodiversity and its conservation	9 h
Biodiversity: Levels of biological diversity: genetic, species and	
ecosystem diversity; Biogeographic zones of India; biodiversity patterns	
and global biodiversity hot spots. India as a mega-biodiversity nation;	
endangered and endemic species of India. Threats to biodiversity: habitat	
loss, poaching of wildlife, man-wildlife conflicts, biological invasions;	
conservation of biodiversity: in-situ and ex-situ conservation of	
biodiversity. Ecosystem and biodiversity services: ecological, economic,	
social, ethical, aesthetic and information value.	

Course Learning Outcomes: At the end of this course, the students will be able to develop:

- Appreciate the multi-disciplinary nature of environmental science
- Understand natural resources and evaluate limitations surrounding renewable and non-renewable resources
- Understand the nuances of ecosystem and learn about behaviour of various ecosystem
- Learn about the types, services and threats to our biodiversity and importance of conserving it.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

William P.	Principles of	McGraw-	2019	9781260219715
Cunningham, Mary	Environmental	Hill		
Ann Cunningham	Science			
Dash and Dash	Fundamentals of	Tata	2009	978-
	ecology	McGraw		0070083660
William P.	Environmental	McGraw-	2021	9781260363821
Cunningham, Mary	Science: A global	Hill		
Ann Cunningham,	concern,			
Barbara				
Woodworth Saigo				
Gaston K.J. and	Biodiversity – An	Blackwell	2004	978-1-405-
Spicer, J. I.	Introduction 2 nd	Publishing		11857-6
	edition			

Course Title: PSY101 (Understanding Self for Effectiveness)

L	Т	Р	Total Credits
1	0	0	1

Teaching
time

Unit I: Self: Core Competency	4.5 h	
Understanding of Self, Components of Self – Self identity, Self concept,		
Self confidence, Self image, BIG5 Factors		
Unit II: Techniques of Self Awareness	4.5 h	
Exploration through Johari Window, Mapping the key characteristics of		
self, Framing a charter for self Stages – self awareness, self acceptance		
and self realization		
Unit III: Self Esteem & Effectiveness		
Meaning, Importance, Components of self esteem, High and low self		
esteem, Measuring your self esteem		
Unit IV: Building Positive Attitude and Emotional Competence		
Meaning and nature of attitude, Components and Types of		
attitude ,Importance and relevance of attitude Emotional Intelligence -		
Meaning, components, Importance and Relevance Positive and negative		
emotions, Healthy and Unhealthy expression of emotions		

Course Learning Outcomes: At the end of this course, the students will be able to:

- The student will apply self-introspection as a tool for self-awareness.
- The student will understand self-concept for self-recognition, self-improvement and perception of others.
- The student will be able to analyze their physical self, social self, the competent self and psychological self.

The student will be able to analyze what motivates his/her actions and the actions of others

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
Singh A.	Achieving	Wiley	2012	978812658027
	Behavioural	Publication		
	Excellence for			
	Success			
Towers, Marc	Self Esteem	American	1995	9781884926297
		Media		

Pedler Mike,	A Manager's Guide	McGraw-	2006	978-
Burgoyne John,	urgoyne John, to Self-			0077114701
Boydell Tom	Development			
Covey, R.	Seven habits of	Simon &	2013	978-
Stephen	Highly Effective	Schuster		1451639612
	People	Ltd		
Khera Shiv	You Can Win	Macmillan	2005	978-
				0333937402
Gegax Tom	Winning in the	Harmony	1999	978-
	Game of Life	Books		0609603925
Singh, Dalip	Emotional	Publications	2006	9780761935322
	Intelligence at Work			
Goleman, Daniel	Emotional	Bantam	2007	9780553095036
	Intelligence	Books		
Goleman, Daniel	Working with E.I	Bantam	1998	9780553104622
	-	Books		

Course Title: FOL101 (Introduction to French Culture & Language)

L	Т	Р	Total Credits
1	0	0	1

	Teaching hours
Unit-I Introduction to French language	4 h
Brief introduction of French and Francophone countries	
Presenting oneself	
 Getting information about someone else 	
Greeting and taking leave	
 Asking/giving personal information 	

Unit-II- A rendez-vous ; Visiting a place	5 h
Pronouncing and writing numbers in French	
Spell and count numbers	
Telling the time	
Temporal expressions	
Communicating in class	
 Fixing an hour, place for a meeting. 	
 Describing a person. 	
 Identifying a person, object and place 	
 Describing relation in a family 	
A specific person, object and place	
Unit-III- An interview	4.5 h
 Description of objects, people and places 	
Nationalities	
 Speaking about one's professions 	
 Expressing Actions using regular –er ending verbs; avoir, être; 	
reflexive verbs – usage, conjuagation	
Interview of celebrity	
Unit-IV- At the discotheque	4.5 h
 Portrait by a journalist 	
 Giving a positive or negative reply 	
Asking questions	
Discussion with a person	
 Activities in a day 	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic French. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context
- Analyse and break-down information to create new ideas
- Evaluate and express opinion in a given context

Text / Reference Books:

Author	Title	Publisher	Year	ISBN No
Christine Andant, Chaterine Metton, Annabelle Nachon, Fabienne Nugue	A Propos – A1 Livre De L'Eleve, Cahier D' Exercices	Langers Int. Pvt. Ltd.	2010	978- 9380809069
<u>Manjiri Khandekar</u> and Roopa Luktuke	Jumelage – 1 Methode De Fraincais – French	Langers International Private Limited	2020	978- 9380809854
Michael Magne, Marie-Laure Lions-Olivieri	Version Originale 1: Cahier d'exercices	Maison Des Langues	2010	9788484435617

Course Title: FOL102 (Introduction to German Culture & Language)

L	Т	Р	Total Credits
1	0	0	1

	Teaching hours
Unit-I Introduction to German Language (Einführung)	3 h
 Introduction to German as a global language, Self-introduction and Greetings, Die Alphabeten, Phonetics: the sound of consonants and vowels, Wie buchstabieren Sie Ihren Name? 	

Unit-II- Numbers and everyday conversation (die Zahl und Gespräche)	6 h
 Counting in German from 1-100, Simple Calculation and verb 'kosten' – Wie viel kostet das? Plural Forms, Vocabulary: Wochentage, Monate, Jahreszeiten, Ordinal numbers and the question – Wann haben Sie Geburtstag? 	
Unit-III- Regular verbs and nominative case: articles and pronouns	456
(Regelmassige verben und Nominativ Kasus: Artikel und Pronomen)	4.5 N
 Introduction to all personal pronouns and conjugation of Regular verbs Detailed exercise on regular verbs. Reading a text on regular verbs. Introduction to definite. Vocabulary: Schulsachen und Getränke, Nominative case/ Articles (der, die, das) Nominative Pronouns: - Applicability of pronouns for both persons and things. Usage of nominative Personal Pronouns Introduction of nominative possessive pronouns usage of nominative possessive pronouns 	
Unit-IV- The Family, Work-life and Professions (Familienmitglieder und Berufe) & Interrogative sentences (W-Fragen)	4.5 h
 The Family, Work-life and Professions (Familienmitglieder und Berufe) Vocabulary: Professions and conjugation of the verb 'sein' Introduction to simple possessive pronouns with the help of the verb 'haben' Usage of possessive pronouns. Interrogative sentences (W-Fragen) W-Fragen: who, what, where, when, which, how, how many, how much, etc. Exercises on the question pronouns 	

Course Learning Outcomes: At the end of this course, the students will be able to express themselves in writing and orally in basic German. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the end of the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context

- Analyse and break-down information to create new ideas
- Evaluate and express opinion in a given context

Text / Reference Books:

Author	Title	Publisher	Year	ISBN
Rolf Bruseke	Starten Wir A 1	Langers Int. Pvt Ltd	2017	978- 3190160006
Giorgio Motta United Wir Plus Grundkurs Deutsch fur Junge Lerner Book		Ernst Klelt Verlog	2011	978- 8183072120
HeimyStation en Deutsch SelfTaylor, WernerStudy Course GermanHaasGuide		Wiley	2007	978- 0470165515

Course Title: INL103 (History and Culture of Punjab)

L	Т	Р	Total Credits
1	0	0	1

	Teaching hours
Unit I:	4.5 h
1. Harappan Civilization: extent and town planning and socio-economic life.	
2. Life in Vedic Age: socio-economic and religious;	
3. Growth and impact of Jainism and Buddhism in Panjab.	
Unit II:	4.5 h

4. Society and Culture under Maurayas and Guptas.	
5. Bhakti movement: Main features; prominent saints and their contribution.	
6. Origin and development of Sufism	
Unit III:	4.5 h
7. Evolution of Sikhism: teaching of Guru Nanak; Institutional	
Development- Manji, Masand, Sangat and Pangat	
8. Transformation of Sikhism: Martyrdom of Guru Arjan; New policy of Guru	
Hargobind, martyrdom of Guru Tegh Bahadur.	
9. Institution of Khalsa: New baptism; significance	
Unit IV:	4.5 h
10. Changes in Society in 18 th century: social unrest; emergence of misls	
and other institutions – rakhi, gurmata, dal iophy.	
11. Society and Culture under Maharaja Ranjit Singh.	
12. MAP (of undivided physical geographical map of Punjab): Major	
Historical Places: Harappa, Mohenjodaro, Sanghol, Ropar, Lahore,	
Amritsar, Kiratpur, Anandpur Sahib, Tarn Taran, Machhiwara, Goindwal,	
Khadur Sahib.	

Course Learning Outcomes:

- Understand the history of various cultures in Punjab.
- Interpret the importance of Maurayan, Gupta and Bhakti influences on Punjab
- Apply the teaching of Sikhism on the emergence of the Khalsa.
- Examine the impact societal changes on socio-cultural and physical landscape of Punjab

Text / Reference Books:

Author	Title	Publisher	Ed/year	ISBN No
L.M Joshi,	History and Culture of the Punjab, Part-I	Punjabi University, Patiala	1989,3 rd	-
Buddha Prakash	Glimpses of Ancient Punjab	Punjabi University, Patiala,	1983	-
Khushwant Singh	A History of the Sikhs, vol I: 1469-1839,	oxford University Press, Delhi	1991	-

Course Title: PHY106 (Basics of Computational Physics)

L	Т	Р	Total Credits
1	0	2	3

Course Outcomes

CO1	Learn the basics including the need and design, architecture of the computer system, Learning the possibilities and limitations of computational methods in physics
CO2	Understand the error analysis, approximation errors, interpolations methods
CO3	Understand the methods to analysis the data: Least square method
CO4	Learning the software and languages
Course	e Contents/syllabus:

	Time (H)
Unit I: Introduction to Fortran	4.5
Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) iophysic figures and (2) trajectory of a projectile thrown at an angle with the horizontal. Some fundamental Linux Commands (Internal and External commands). Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and	

their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment. Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non- Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems.	
Unit II: Control Statement and its Types	4.5
 Types of Logic(Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems as mentioned below Exercises on syntax on usage of FORTRAN Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN. To print out all natural even/ odd numbers between given limits. To find maximum, minimum and range of a given set of numbers. Calculating Euler number using exp(x) series evaluated at x=1 	
Unit III: Introduction to LaTeX	4.5
TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages.	

columns- Tabbing and tabular environment, Generating table of contents, bibliography, citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.	
Unit IV: Analysis and Visualization	4.5
Introduction to graphical analysis and its limitations. Introduction to Gnuplot. Importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot. Using the above concepts, write a code for the following problems.	
Practicals	72 hours
 List of Experiments -with basic instructions To compile a frequency distribution and evaluate mean, standard deviaties To evaluate the sum of finite series and the area under a curve. To find the product of two matrices To find a set of prime numbers and Fibonacci series. To write a program to open a file and generate data for plotting using Gr Plotting trajectory of a projectile projected horizontally. Plotting trajectory of a projectile projected making an angle with the horiz Creating an input Gnuplot file for plotting data and saving the output for screen. Saving it as an eps file and as a pdf file. To find the roots of a quadratic equation. 	on etc. huplot. zontal. seeing on tł

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

S. Sastry	Introductory Methods of Numerical Analysis	Prentice Hall Pvt. Ltd.	5 th edition, 2012	978- 8120345928
R.C. Verma	Computational Physic	Newage publishers	1 st edition, 2005	978- 8122416596
Atkinson, K E	Elementary Numerical analysis	Wiley India	3 rd edition, 2003	9780471433378
V. Rajaraman	Computer Programming Fortran 90 and 95	Prentice Hall Pvt. Ltd.	1997	978- 8120311817

Course Title: CHE103 (General Chemistry-I)

L	Т	Р	Total Credits
2	0	1	3

Course Learning Outcomes

CO1	Knowledge of evolution of scientific theories to explain the atomic structure, molecular geometry and physico-chemical behaviour of atomic matter made from elements in periodic table.
CO2	Focus on fundamentals of organic molecules, structure, stereochemistry, bonding, reactivity and reaction mechanisms.
CO3	Familiarization with solid and liquid states of matter and its physical laws related to describe them
C	Contenteloullehuer

	Teaching
	hours
Unit I: Atomic Structure	9 h
Bohr's theory, Wave mechanics: de' Broglie equation, Heisenberg's	
Uncertainty Principle and its significance, Schrödinger's wave equation,	
Quantum numbers and their significance. Radial and angular wave	
functions for hydrogen atom. Radial and angular distribution curves.	
Shapes of s, p, d and f orbitals. Pauli's Exclusion Principle, Hund's rule	
of maximum multiplicity, Aufbau's principle and its limitations, Variation	
of orbital energy with atomic number.	
Unit II: Periodic Properties of Elements	9 h
s, p, d, f block elements, the long form of periodic table. Detailed	
discussion of the following properties of the elements, with reference to	
s and p-block. (a) Effective nuclear charge, shielding or screening	
effect, Slater rules, variation of effective nuclear charge in periodic	
table.	
(b) Atomic radii (Van'der Waals), (c) Ionic and crystal radii.	
(d) Covalent radii (octahedral and tetrahedral)	
I Ionization enthalpy, Successive ionization enthalpies and factors	
affecting ionization energy. Applications of ionization enthalpy.	
(f) Electron gain enthalpy, trends of electron gain enthalpy.	
(g) Electronegativity, Pauling, Mullikan, Allred Rachow scales,	
electronegativity and bond order, partial charge	
Unit III: Basics of Organic Chemistry and Stereochemistry	9 h
a)Organic Compounds: Classification, and Nomenclature,	
Hybridization, Shapes of molecules, Influence of hybridization on bond	
properties. Electronic Displacements: Inductive, electromeric,	
resonance and mesomeric effects, hyperconjugation and their	
applications; Dipole moment; Organic acids and bases; their relative	
strength. Homolytic and Heterolytic fission with suitable examples. Curly	
arrow rules, formal charges; Electrophiles and Nucleophiles;	
Nucleophlicity and basicity; Types, shape and relative stabilities of	
reaction intermediates (Carbocations, Carbanions, Free radicals and	

Carbenes). Organic reactions and their mechanism: Addition,	
Elimination and Substitution reactions.	
<u>b</u>) Stereochemistry:Concept of asymmetry, Fischer Projection,	
Newmann and Sawhorse projection formulae and their interconversions;	
Geometrical isomerism: cis–trans and, syn-anti isomerism E/Z notations	
with C.I.P rules. Optical Isomerism: Optical Activity, Specific Rotation,	
Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-	
centres, Distereoisomers, meso structures, Racemic mixtures, Relative	
and absolute configuration: D/L and R/S designations.	
Unit IV: States of matter : Gases and Liquids	9 h
<u>a)Gases</u> : Deviations from ideal gas behavior, compressibility factor, and	
its variation with pressure for different gases. Causes of deviation from	
ideal behavior. Van der Waals equation of state, its derivation and	
application in explaining real gas behaviour; van der Waals equation	
expressed in virial form, Boyle temperature. Isotherms of real gases and	
their comparison with van der Waals isotherms, continuity of states,	
critical state, critical and van der Waals constants, law of corresponding	
states. Kinetic molecular model of a gas: postulates and derivation of the	
kinetic gas equation; collision frequency; collision diameter; mean free	
path and viscosity of gases, including their temperature and pressure	
dependence, relation between mean free path and coefficient of	
viscosity, calculation of σ from η ; variation of viscosity with temperature	
and pressure. Maxwell distribution and its use in evaluating molecular	
velocities (average, root mean square and most probable) and average	
kinetic energy, law of equipartition of energy, degrees of freedom and	
molecular basis of neat capacities. <u>B)Liquids</u> : Structure and physical	
properties of liquids; vapour pressure, surface tension, viscosity, and	
their dependence on temperature, Effect of addition of various solutes	
on surface tension, cleansing action of detergents. Structure of water.	00 11
Practical:	30 Hours
	Iotal

Inorganic Chemistry Practicals
Titrimetric Analysis
(i) Calibration and use of apparatus.
(ii) Preparation of solutions of different Molarity/Normality of titrants.
(iii) Use of primary and secondary standard solutions.
Acid-Base Titrations
(i) Estimation of carbonate and hydroxide present together in mixture.
(ii) Estimation of carbonate and bicarbonate present together in a mixture.
Checking the calibration of the thermometer.
Organic Chemistry Practicals
Determination of the melting points of given organic compounds and
unknown organic compounds (using Kieldahl method and electrically heated
melting point apparatus).
Chromatography
a. Separation of a mixture of two amino acids by ascending and horizontal
paper chromatography
b. Separation of a mixture of two sugars by ascending paper chromatography
c. Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by
thin laver chromatography (TLC)
Physical Chemistry Practicals
Surface tension measurements
a Determine the surface tension by (i) drop number (ii) drop weight method
b. Study the variation of surface tension of detergent solutions with
b. Study the variation of surface tension of detergent solutions with
Viscosity measurements using Ostwald's viscometer
 VISCOSILY measurements using Ostwalu's VISCOMELET. Determination of viscosity of agreeous solutions of (i) polymer (ii) othersel
a. Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol
and (iii) sugar at room temperature.
b. Viscosity of sucrose solution with the concentration of solute.
Text Books/literature

r	1	r		
AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

J.D. Lee	Concise Inorganic Chemistry	John Wiley and Sons	2016	978-8126515547
M. B. Smith, J. March	, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure	Wiley- Interscience	2015	978-8126556588
Atkins P.W, Julio de Paula	Physical Chemistry	Oxford University Press	2018	978-0198814740
J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas	Vogel's Quantitative Chemical Analysis	Longman	1999	978-582226289
Shoemaker, D.P Garland,	Experiments in Physical Chemistry	McGraw Hill Inc	2008	978-0070570078

C.W Nibler,		
J.W		

Semester-II

Course Title : Electricity and Magnetism II

L	Т	Ρ	Total Credits
3	0	1	4

Electricity and Magnetism II	Theory: 54h,
	Pract:36h

Course Outcomes

CO1	Explanation on the knowledge of mathematics required to learn electrostatics and magnetostatics
CO2	Explanation of differential analysis of the electric force and field vectors as well as on scalar quantities such as potential and potential energy
CO3	Articulate knowledge of capacitance in terms of electric field and electric potential. Demonstrate a working understanding of capacitors

CO4	Understand the dielectric properties, magnetic properties of materials and the phenomena of electromagnetic induction
CO5	Understanding on magnetostatics and its applications

Unit-1- Electric Fields in Matter	Lectures:
	14 h
Conductors in an electrostatic Field, Method of Images and its application	ation to Plane
Infinite Sheet Capacitance of a system of charged conductors, Parallel-p	late capacitor,
Dielectrics: Polar and non polar Dielectrics, Induced dipole moments, Per	manent dipole
moments, Polarization, , Gauss law in Dielectrics, capacitor with Dielectric	ics (series and
parallel), polarisability, Susceptibility and Dielectric Constant, Electric	Displacement,
permittivity Moments of a charge distribution, Potential and field of a	dipole, electric
field caused by polarized matter, Gauss's law in dielectric medium	-
Unit-2- The Fields of Moving Charges	Lectures:

Unit-2- The Fields of Moving Charges	Lectures:
	13 h

Magnetic forces, Measurement of a charge in motion, invariance of charge, Electric field measured in different frames of reference, Field of a point charge moving with constant velocity, Field of a charge that starts or stops, Force on a moving charge, Interaction between a moving charge and other moving charges.

Unit-3- Magnetism and materials	Lectures:
-	14 h

Magnetic force due to line, surface and volume currents, Magnetic vector potential, Transformations of electric and magnetic fields. Rowland's experiment, Hall effect, magnetic fields in matter: Response of various substances to magnetic field, Force on a dipole in an external field, Electric currents in Atoms, Electron spin and Magnetic moment, Magnetization, types of magnetic materials (Dia, para and ferro), Magnetic susceptibility, magnetic nanoparticles: synthesis and characterization, Effect of a Magnetic Field on Atomic Orbit

12 h	s:
1311	

Concept of magnetic circuit and its correspondence with electric circuits, Magnetomotive force (m.m.f.), Reluctance, Permeance, series and parallel magnetic circuits, Magnetic Leakage and Fringing, B-H Curve and Calculations, Hysteresis loop and Loss, Kirchhoff's law for magnetic circuits

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Edward M. Purcell	Electricity and Magnetism	McGraw- Hill Education	1986	
D.J. Griffiths	Introduction to Electrodynamics	Benjamin Cummings	1998	
J.H. Fewkes & J. Yarwood	Electricity and Magnetism	Oxford University Press	1991	978-0198814740

R.P. Feynman, R.B. Leighton, M. Sands	Feynman Lectures Vol.2	Pearson Education	1981	
Matthew N.O. Sadiku	Elements of Electromagnetics	Oxford University Press	2010	
S. Mahajan and Choudhury	Electricity, Magnetism & Electromagnetic Theory	Tata McGraw	2012	

Practicals	36 hours
Objective: The aim of this section of the course is to build an understanding about	
various components of an electrical circuit and to develop skill to measure the related	
physical quantities.	
• Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c)	
DC Current, (d) Capacitances, and I Checking electrical fuses.	
• To determine an unknown Low Resistance using Potentiometer.	
 To determine an unknown Low Resistance using Carev Foster's Br 	idae.

- Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- To determine the value of an air capacitance by de-Sauty Method and to find permittivity of air. To determine the dielectric constant of a liquid.
- To verify the Thevenin and Norton theorems.
- To verify the Superposition, and Maximum power transfer theorems.
- To determine self-inductance of a coil by Anderson's bridge.
- To study the response curve of a Series LCR circuit and determine its (a)
Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.

- Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- Determine a high resistance by leakage method using Ballistic Galvanometer.
- To determine self-inductance of a coil by Rayleigh's method.
- To determine the mutual inductance of two coils by Absolute method.
- To determine the frequency of A.C. mains using sonometer.
- To measure iophys e.m.f. of a thermocouple as a function of temperature and find inversion temperature.
- To study C.R.O. as display and measuring device by recording sines and square waves, output from a rectifier, verification (qualitative) of law of electromagnetic induction and frequency of A.C. mains.
- To plot the Lissajous figures and determine the phase angle by C.R.O.
- To study B-H curves for different ferromagnetic materials using C.R.O.
- Determination of low inductance by Maxwell-Wein bridge.
- Studies based on LCR Board: Impedance of LCR circuit and the phase and between voltage and current.

Course Title : Oscillations and Waves

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

CO1	Understand the fundamental principles underlying wave phenomena using a
	mathematical description for certain systems
CO2	To acquire the fundamental properties of wave and its application in
	mechanical waves and electromagnetic radiation such as light
CO3	Study of two perpendicular oscillators (Lissajous figures) and behaviour of
	transverse, longitudinal waves
CO4	Understand the principle of superposition and its role in understanding the
	interference, diffraction and polarization with their everyday life observation
CO5	Understand the mechanism of few optical instruments like biprism,
	interferometer, diffraction grating, and holograms

Course Content

Unit-1-Simple Harmonic Free Oscillations	Lectures:
	14 h

Simple harmonic oscillations (SHO) and its equation, Energy of SHO, spring- mass systems, simple and compound pendulum, torsion pendulum, Electrical Oscillations, Plasma Vibrations, Lattice Vibrations, Superposition Harmonic oscillations:Standing (Stationary) Waves in a String: Fixed and Free Ends of the same period and of periods in ratio 1:2, Lissajous and their uses.

Unit-2-Damped and forced oscillations	Lectures:
	16 h

Damped Harmonic oscillations and its equation, different cases of damping: heavy, critical and light, Determination of damping coefficients – Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping, collision damping – lonosphere and metals. Free and forced oscillations, A forced oscillator, Transient and Steady State Oscillations, velocity versus driving force frequency, Resonance, power supplied to forced oscillator by the driving force, Q-factor of a forced oscillator, Electrical (series and parallel), nuclear and nuclear-magnetic resonances, coupled oscillations, Normal coordinates and modes of vibrations. Normal frequencies

Unit-3-Waves in physical media	Lectures:
	18 h

Wave motion in one dimension, Transverse and longitudinal waves, progressive harmonic waves and their energy, Transverse waves on a string, longitudinal waves on a rod, Electrical transmission lines, characteristic impedance of a string and a transmission line, superposition of harmonic waves: interference and beats, stationary waves, Acoustic waves, waves in dispersive and adsorptive media, spherical waves

Unit-4- Reflection and Transmission	Lectures:
	18 h

Reflection and transmission of transverse waves on a string at the discontinuity, Energy considerations of reflected and transmitted waves, Impedance matching, eigenfrequencies and eigenfunctions for stationary waves on a string. Normal modes in three dimensions, Planck's Law, Debye's T3 Law, Conduction electrons in a metal, transmission of non-monochromatic waves, Bandwidth Theorem.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Francis Crawford	Waves: Berkeley Physics Course, vol. 3	Tata McGraw- Hill.	2007	9780070048607
H. J. Pain	The Physics of Vibratior and Waves	John Wiley and Sons	2013	9780470012956

N.K. Bajaj	The Physics of Waves and Oscillations	Tata McGraw Hill	1998	9780074516102
Ajoy Ghatak	Optics	Tata McGraw Hill	2008	
Max Born an Emil Wolf	Principles of Optics	Pergamon Press	1999	
S.P.Puri	Text Book of Vibrations and Waves	Tata McGraw Hill	2004	

Oscillations and Waves	Practicals: 36 h
Objective: The aim of this section of the course is to build an un various components of an optical instrument and to develop skill to methods a section of the course is to build an unit of the course is to b	derstanding about leasure the related
 To determine the frequency of an electric tuning fork by Melo 	de's experiment

- To determine the frequency of an electric tuning fork by Melde's experiment and verify λ² – T law.
- To investigate the motion of coupled oscillators.
- To study Lissajous Figures.
- Familiarization with: Schuster's focusing; determination of angle of prism.
- To determine refractive index of the Material of a prism using sodium source.
- To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.

- To determine the wavelength of sodium source using Michelson's interferometer.
- To determine wavelength of sodium light using a plane diffraction grating.
- To determine wavelength of sodium light using Newton's Rings.
- To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- To determine dispersive power and resolving power of a plane diffraction grating.

Course Title:(PHY201) Mathematical Physics-II

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

CO1	Understand the partial differential equation and its applications to			
	physics problems			
CO2	Gets familiar to Fourier analysis of periodic functions and Fourier			
	transformation and appreciates its applications to physics problems			
CO3	Become familiar to special functions such as the Hermite polynomial,			
	the Legendre polynomial, the Laguerre polynomial and Bessel			
	functions and their differential equations with their applications			
CO4	Learning of beta, gamma and the error functions and their			
	applications in doing integrations			

Course Contents

Unit-1- Partial Differential Equations and Frobenius Method	Lectures:	
	14	
Solutions to partial differential equations, using separation of variable Equation in problems of rectangular, cylindrical and spherical syme equation and its solution for vibrational modes of a stretched string, recircular membranes. Diffusion Equation. Singular Points of Second Differential Equations and their importance. Frobenius method and its a differential equations.	les: Laplace's nmetry. Wave ctangular and Order Linear applications to	
Unit-2-Fourier Series	Lectures: 13	
Periodic functions. Orthogonality of sine and cosine functions, Dirich (Statement only). Expansion of periodic functions in a series of sin functions and determination of Fourier coefficients. Complex representa series. Expansion of functions with arbitrary period. Expansion of non-per over an interval. Even and odd functions and their Fourier expansions Summing of Infinite Series. Term-by-Term differentiation and integrat Series. Parseval Identity.	let Conditions e and cosine tion of Fourier iodic functions s. Application. ion of Fourier	
Unit-3- Special Functions and Integrals	Lectures: 14	
Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality. Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).		
Unit-4- Theory of Errors	Lectures:	
	13	
Systematic and Random Errors. Propagation of Errors. Normal Law of Err and Probable Error. Least-squares fit. Error on the slope and intercept o	rors. Standard f a fitted line.	

Authors	Title	Publisher	Ed/year	ISBN No
M.R. Spiegel	Fourier Analysis	Tata McGraw Hill	2004	978- 0070588837
George F. Simmons	Differential Equations	Tata McGraw- Hill	2006	978- 8126515370
S.J. Farlow	Partial Differential Equations for Scientists & Engineers	Dover Pub	1993	978- 0486676203
Arfken, Weber, and Harris,	Mathematical Methods for Physicists	Elsevier	2005	978- 9381269558
D.A. McQuarrie	Mathematical methods for Scientists & Engineers	Viva Books	2003	978- 8130909974
K.F.Riley M.P.Hobson	Essential Mathematical Methods	Cambridge Univ. Press	2011	978- 0521761147

Susan M. Lea,	Mathematics for	Thomson	2004	978-
	Physicists	Brooks/Cole		0534424763

Mathematical Physics – II	Practicals: 36
Objective: The aim of this Lab is to use the computational methods t	o solve physical
problems. Course will consist of lectures (both theory and practic	cal) in the Lab.
Evaluation done not on the programming but on the basis of formulating	ng the problem
 Introduction to Scilab, Advantages and disadvantages, Scila 	b environment,
Command window, Figure window, Edit window, Variables and a	rrays, Initialising
variables in Scilab, Multidimensional arrays, Subarray, Special va	aretiona Built in
Scilab functions Introduction to plotting 2D and 3D plotting	(2) Branching
Statements and program design, Relational & logical operators, th	e while loop, for
loop, details of loop operations, break & continue statements, nest	ed loops, logical
arrays and vectorization (2) User defined functions, Introduction to	Scilab functions,
Variable passing in Scilab, optional arguments, preserving data be	etween calls to a
function, Complex and Character data, string function, Multidimen	sional arrays (2)
an introduction to Scilab file processing, file opening and clo	sing, Binary I/o
functions, comparing binary and formatted functions, Numerical met	hods developing
the skills of whiting a program (2)	ing constant
 Linear system of equations: Solution of mesh equations of electric 	rircuits (3
meshes) Solution of coupled spring mass systems (3 masses) usin	d Gauss
elimination method & Gauss Seidal method. Diagonalization of mat	rices. Inverse of
a matrix, Eigen vectors, eigen values problems	,
Solution of Ordinary Differential Equations (ODE) :Second Differential	tial Equations
for	-

- Harmonic oscillator (no friction)
- Damped Harmonic oscillator (Over damped, Critical damped, Oscillatory)
- Forced Harmonic oscillator (Transient and Steady state solution)
- Apply above to LCR circuits
 Using Scicos / xcos :

- Generating square wave, sine wave, sawtooth wave
- Solution to harmonic oscillator
- $\circ \quad \text{Study of beat phenomenon} \\$
- Phase space plots

Course Title: ENV102 (Environmental Studies-II)

L	Т	Р	Total Credits
2	0	0	2

Course Contents/syllabus:

	Teaching
	hours
Unit-1- Environmental Pollution	11 h
Environmental Pollution: types, Cause, effects and controls –Air, water, soil, chemical and noise pollution. Nuclear hazard and human health risk. Solid waste Management-control measures of urban and industrial waste. Pollution case studies	
Unit-2-Environmental Policies and practices:	11 h
Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture. Environment laws: Environment Protection Act; Air (Prevention and Control of Pollution) Act; Water (Prevention and Control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act, international agreements: Montreal and Kyoto	

protocols and convention on biological diversity (CBD), The Chemical Weapons Convention (CWC). Natural reserves, tribal population and	
rights and Human-wildlife conflict in Indian context	
Unit-3- Human communities and the Environment	10 h
Impacts on environment, human health and welfare.	
Carbon footprint.	
Resettlements and rehabilitation of project affected persons, case studies. Disaster management: floods, earthquake, cyclone and landslides. Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation. Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi	
Unit-4- Field Work	4 h
 Visit to an area to document environmental assets: river/forest/flora/fauna, etc. 	
· Visit to local polluted Site-Urban/Rural/Industrial/Agricultural	
- Study of common plants, insects, birds and basic principles of identification.	
Study of simple ecosystems-pond, river, Delhi Ridge, etc.	

Course Learning Outcomes: At the end of this course, the students will be able to develop:

1. Understanding the types of pollution and their impact on environment and human health.

2. Understand the environmental concerns and their impact on humans and agriculture.

3. Sensitization about the environmental issues and concerns leading to proactive actions to improve the environmental conditions in our daily life.

4. Able to analyze the impacts of natural and manmade disaster on human population and settlements and the role of movements and environmental ethics in minimizing environmental disasters

5. Able to imbibe practical approaches and solution to solve environmental concerns.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
William P.	Principles of	McGraw-	2019	9781260219715
Cunningham, Mary	Environmental	Hill		
Ann Cunningham	Science			
Dash and Dash	Fundamentals of	Tata	2009	978-
	ecology	McGraw		0070083660
William P.	Environmental	McGraw-	2021	9781260363821
Cunningham, Mary	Science: A global	Hill		
Ann Cunningham,	concern,			
Barbara				
Woodworth Saigo				
Gaston K.J. and	Biodiversity – An	Blackwell	2004	978-1-405-
Spicer, J. I.	Introduction 2 nd	Publishing		11857-6
	edition			

Text / Reference Books:

Course Title: PSY111- Individual, Society and Nation (Behavioural Sciences)

L	Т	Total Credit
1	0	1

List of Professional Skill Development Activities (PSDA):

- Project on Understanding Diversity
- Term Paper on Patriotism among Youth

Course Learning Outcomes: On completion of the course:

- To recognize individual differences
- To manage individual differences
- To develop patriotic feelings
- To recognized their self in relation to society & nation

Course Contents/syllabus:

	Hours
Unit-1- Individual differences & Personality	5 H
 Personality: Definition& Relevance 	
 Importance of nature & nurture in Personality Development 	
 Importance and Recognition of Individual differences in Persona 	
Accepting and Managing Individual differences Intuition	
Perception & Sensation (MBTI) BIG5 Factors	
Unit-2- Managing Diversity	5 H
Defining Diversity	
 Affirmation Action and Managing Diversity 	
 Increasing Diversity in Work Force 	
 Barriers and Challenges in Managing Diversity 	
Unit-3- Socialization, Patriotism and National Pride	4 H
Nature of Socialization	
Social Interaction	
 Interaction of Socialization Process 	
 Contributions to Society and Nation 	
 Sense of pride and patriotism 	
 Importance of discipline and hard work 	
 Integrity and accountability 	

Unit-4- Human Rights, Values and Ethics	4 H
 Meaning and Importance of human rights 	
Human rights awareness	
• Values and Ethics- Learning based on project work on Scriptures like-	
Ramayana, Mahabharata, Gita etc.	

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Department of English, Univ. of Delhi	The Individual & Society	Pearson Education	2010	978- 8131704172
Umang Malhotra	Individual, Society, and the World	Universe	2004	978- 0595662401
Tonja R. Conerly & Kathleen Holmes	Introduction to Sociology 3e	Openstax	2015	9781711493978
Daksh Tyagi	"A Nation of Idiots"	Every Protest	2019	978- 8194275015

Course Title: French Grammar (FOL-103)

L	Т	Total Credit Units
1	0	1

Course Learning Outcomes: At the end of the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context
- Analyze and break-down information to create new ideas
- Evaluate and express opinion in a given context

Course Contents/syllabus:

	Teaching Hours
Unit-I : My family and my house	5 H
Descriptors/Topics	
Talk about your family members	
 Usage of possessive adjectives 	
 Describe your house/apartment 	
Prepositions of location	
Negation	
Unit-II- Lifestyle	4 H
Descriptors/Topics	
 Talk about your hobbies and pastimes 	
 Usage of appropriate articles : definite and contracted 	
 Talk about your daily routine 	
Usage of pronominal verbs	
Unit-III- In the city	4 H
Descriptors/Topics	
Filling up a simple form	
Ask for personal information	
 Usage of interrogative adjectives 	
Give directions about a place	
Ordinal numbers	
Usage of demonstrative adjectives	
Unit-IV- Week-end	5 H
Descriptors/Topics	
 Talk about your week-end plans 	
Usage of disjunctive pronouns	
Usage of Near Future tense	
Talk about weather	
Write a simple post card	

Text / Reference Books:

Author	Title	Publisher	Year of	ISBN No
			Publication	

Christine Andant, Catherine Metton, Annabelle Nachon, Eabienne Nuque	A Propos – A1, Livre de l'élève et Cahier d'exercices.	Langers International Pvt. Ltd.	2010	978- 9380809069
Collins Dictionaries	Easy Learning French Complete Grammar, Verbs and Vocabulary	Collins	2016	978- 0008141721
Nikita Desai, Samapita Dey Sarkar	Apprenons La Grammaire Ensemble – French	Langers International Pvt. Ltd.	2017	978- 8193002681

Course Title: German Grammar (FOL-104)

L	Т	Total Credit Units
1	0	1

Course Outcome:

At the end of the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context
- Analyze and break-down information to create new ideas
- Evaluate and express opinion in a given context

Course Contents/syllabus:

	Teaching Hours
Module I: Time (Uhrzeit); People and the World: Land, Nationalität	5 H
und Sprache	
Introduction of time	
 Read text related to time and teach the students the time 	
expressions	

 Exercises related to Time Adverbs of time and time related prepositions Vocabulary: Countries, Nationalities, and their languages Negation: "nicht/ kein" Ja/Nein Fragen. All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns - Revision of the nominative personal pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns Difference between nominative possessive pronouns Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Usage of accusative possessive pronouns 		
 Adverbs of time and time related prepositions Vocabulary: Countries, Nationalities, and their languages Negation: "nicht/ kein" Ja/Nein Fragen. All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) 4 H Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Usage of accusative Indefinite articles Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns 	Exercises related to Time	
 Vocabulary: Countries, Nationalities, and their languages Negation: "nicht/ kein" Ja/Nein Fragen. All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) 4 H Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Indefinite articles Usage of accusative lndefinite articles Accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns 	 Adverbs of time and time related prepositions 	
 Negation: "nicht/ kein" Ja/Nein Fragen. All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Module IV: Accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. 	 Vocabulary: Countries, Nationalities, and their languages 	
 Ja/Nein Fragen. All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. 	 Negation: "nicht/ kein" 	
 All the colors and color related vocabulary, adjectives, and opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Indefinite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and things. Usage of accusative personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns Difference between nominative and accusative possessive pronouns 	 Ja/Nein Fragen. 	
opposites Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) 4 H • Introduction to irregular verbs and their conjugation e.g. fahren, essen, jophy etc 8 • Read a text related to the eating habits of Germans 9 • Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs 9 • Free time and hobbies 9 • Food and drinks 5 H Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) 5 H • Introduction to the concept of object (Akkusativ) 5 H • Formation of sentences along with the translation and difference between nominative and accusative articles 9 • Usage of accusative Definite articles 9 • Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship 4 H • Accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. 4 H • Usage of accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. 9 • Accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. 9 • Usage of accusative Personal Pronouns 9 • Introduction of accusative possessive pronouns	 All the colors and color related vocabulary, adjectives, and 	
 Exercises and comprehension for the same. Module II: Irregular verbs (unregelmässige Verben) Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns for both personal difference between nominative personal Pronouns Introduction of accusative possessive pronouns Usage of accusative Personal Pronouns 	opposites	
Module II: Irregular verbs (unregelmässige Verben) 4 H Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) 5 H Introduction to the concept of object (Akkusativ) 5 H Formation of sentences along with the translation and difference between nominative and accusative articles 4 H Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship 4 H Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. 4 H Usage of accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. 5 H Usage of accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. 4 H Usage of accusative Personal Pronouns 5 H Accusative Personal Pronouns 5 H Accusative Personal Pronouns 5 H Module IV: Accusative possessive pronouns 5 H Module IV: Accusative Pers	 Exercises and comprehension for the same. 	
 Introduction to irregular verbs and their conjugation e.g. fahren, essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Indefinite articles Usage of accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Introduction of accusative possessive pronouns 	Module II: Irregular verbs (unregelmässige Verben)	4 H
essen, iophy etc Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns	 Introduction to irregular verbs and their conjugation e.g. fahren, 	
 Read a text related to the eating habits of Germans Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	essen, iophy etc	
 Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	 Read a text related to the eating habits of Germans 	
verbs• Free time and hobbies• Food and drinksModule III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen)• Introduction to the concept of object (Akkusativ)• Formation of sentences along with the translation and difference between nominative and accusative articles• Usage of accusative Definite articles• Usage of accusative Indefinite articles• Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship• Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things.• Usage of accusative Personal Pronouns• Introduction of accusative possessive pronouns• Difference between nominative and accusative possessive pronouns• Difference between nominative and accusative possessive pronouns• usage of accusative possessive pronouns• usage of accusative possessive pronouns• usage of accusative possessive pronouns	 Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular 	
 Free time and hobbies Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Possessive pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	verbs	
 Food and drinks Module III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative possessive pronouns Introduction of accusative possessive pronouns Introduction of accusative possessive pronouns Introduction of accusative possessive pronouns 	Free time and hobbies	
Module III: Accusative case: articles and pronouns (Akkusativ 5 H Kasus: Artikel und Pronomen) Introduction to the concept of object (Akkusativ) 5 H Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Definite articles Usage of accusative Indefinite articles 4 H Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship 4 H Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns	Food and drinks	
Kasus: Artikel und Pronomen) • Introduction to the concept of object (Akkusativ) • Formation of sentences along with the translation and difference between nominative and accusative articles • Usage of accusative Definite articles • Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship • Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. • Usage of accusative Personal Pronouns • Introduction of accusative possessive pronouns • Difference between nominative and accusative possessive pronouns • Difference between nominative and accusative possessive pronouns • Difference between nominative and accusative possessive pronouns	Module III: Accusative case: articles and pronouns (Akkusativ	5 H
 Introduction to the concept of object (Akkusativ) Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	Kasus: Artikel und Pronomen)	
 Formation of sentences along with the translation and difference between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	 Introduction to the concept of object (Akkusativ) 	
 between nominative and accusative articles Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	 Formation of sentences along with the translation and difference 	
 Usage of accusative Definite articles Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	between nominative and accusative articles	
 Usage of accusative Indefinite articles Module IV: Accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	Usage of accusative Definite articles	
Module IV: Accusative case: possessive pronouns (Akkusativ 4 H Kasus: Possessivpronomen) Family and Relationship 4 H • Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. 9 • Usage of accusative Personal Pronouns 9 • Introduction of accusative possessive pronouns 9 • Difference between nominative and accusative possessive pronouns 9 • usage of accusative possessive pronouns 9	Usage of accusative Indefinite articles	
 Kasus: Possessivpronomen) Family and Relationship Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	Module IV: Accusative case: possessive pronouns (Akkusativ	4 H
 Accusative Personal Pronouns: - Revision of the nominative personal pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	Kasus: Possessivpronomen) Family and Relationship	
 pronouns and introduction of accusative. Applicability of pronouns for both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	Accusative Personal Pronouns: - Revision of the nominative personal	
 both persons and things. Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	pronouns and introduction of accusative. Applicability of pronouns for	
 Usage of accusative Personal Pronouns Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	both persons and things.	
 Introduction of accusative possessive pronouns Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns 	Usage of accusative Personal Pronouns	
Difference between nominative and accusative possessive pronouns usage of accusative possessive pronouns	Introduction of accusative possessive pronouns	
usage of accusative possessive pronouns	 Difference between nominative and accusative possessive pronouns 	
	usage of accusative possessive pronouns	

Text / Reference Books:

Author	Title	Publisher	Year	ISBN No
Dora Schulz, Heinz Griesbach	Deutsche Sprachlehre Fur Auslander	Max Hueber Verlag	1984	978- 3190010066
Hartmut Aufderstrasse, Jutta Muller, Helmut Muller	Themen Aktuell: Glossar Deutsch	Max Hueber Verlag	2003	978- 3190816903
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book German Guide	Goyal Publishers	2011	9788183072120

Course Title: (PHY113) Renewable Energy and Energy Harvesting

L	Т	Р	Total Credits
3	0	0	3

SEC4:	Renewable	Energy ar	nd Energy	Harvesting
-------	-----------	-----------	-----------	------------

Course Outcomes

CO1	Knowledge of alternative resources of energy.
CO2	Evaluation of the solar energy and its application involving the conversion process.
CO3	Learning the various technologies to generate geothermal and hydro energy.
CO4	Exploring the concept of piezoelectric energy.
CO5	Analyzing the techniques and methods to harvest electromagnetic energy
<u> </u>	

Course Content:

Unit-1-Alternate Energy Sources	Lectures: 5		
Fossil fuels and nuclear energy, their limitation, need of renewable	energy, non-		
conventional energy sources. An overview of developments in Offshore	Wind Energy,		
Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion	, solar energy,		
biomass, biochemical conversion, biogas generation, geothermal energy	y tidal energy,		
Hydroelectricity.			
Unit-2-Solar Energy	Lectures: 7		
Solar energy, its importance, storage of solar energy, solar pond, non-co	nvective solar		
pond, applications of solar pond and solar energy, solar water hea	ter, flat plate		
collector, solar distillation, solar cooker, solar green houses, solar cell, a	absorption air		
conditioning. Need and characteristics of photovoltaic (PV) systems, PV	/ models and		
equivalent circuits, and sun tracking systems.			
Unit-3-Geothermal & Hydro-Energy Lectures: 5			
Geothermal Resources, Geothermal Technologies. Hydropowe	r resources,		
hydropower technologies, environmental impact of hydro power source.			
Unit-4-Wind and Ocean Energy Lectures: 8			
Fundamentals of Wind energy, Wind Turbines and different electrical ma	chines in wind		
turbines, Power electronic interfaces, and grid interconnection topol	ogies. Ocean		
Energy Potential against Wind and Solar, Wave Characteristics and St	atistics, Wave		

Energy Devices.	Tide characteristics	and Statistics,	Tide Energy	Technologies,	Ocean
Thermal Energy,	Osmotic Power, Oce	ean Bio-mass.			

Unit-5-Piezoelectric Energy	Lectures: 5
Introduction, Physics and characteristics of piezoelectric effect, r	naterials and
mathematical description of piezoelectricity, Piezoelectric parameters	and modeling
piezoelectric generators, Piezoelectric energy harvesting applications, H	uman power
Unit-6-Electromagnetic Energy Harvesting	Lectures: 6
Linear generators, physics mathematical models, recent applications. Ca	rbon captured
technologies, cell, batteries, power consumption. Environmental issues a	nd Renewable
sources of energy, sustainability	

Text Books/Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
G.D Rai	Non-conventional energy sources	Khanna Publishers, New Delhi	1 January 1988	978- 8174090737
M P Agarwa	Solar energy	S Chand and Co. Ltd.	January 1, 1983	OCLC Number: 11572325
Suhas P Sukhative	Solar energy	Tata McGraw - Hill Publishing Company Ltd.	1997	9780074624531
Godfrey Boyle	Renewable Energy:Power for a sustainable future	Oxford University Press	2004	978- 0199545339

Jan Kleissl	Solar Energy Forecasting and Resource	Elsevier Publications	2013	9780123977724
	Assessment			

Course Title: Weather Forecasting

L	Т	Р	Total Credits
3	0	0	3

Course Outcomes

CO1	Learning of atmospheric structure and processes related to it.
CO2	Understanding the different weather systems and issues related to them.
CO3	Analyzing the causes of climate change and its impact on the Earth
CO4	Learning the various experimental methods for the measurements of different factors related to atmosphere, weather and climate.
CO5	Knowledge of working principle of weather satellites and weather maps.

Course Content

Unit-1-Introduction to Atmosphere	Lectures: 10 h
Elementary idea of atmosphere: physical structure and composition, layering of the atmosphere, variation of pressure and temperature w	compositional ith height, air
temperature; requirements to measure air temperature; temperature	sensors and

types, atmospheric pressure: its measurement, cyclones and anti characteristics.	icyclones: its
Unit-2-Weather Systems	Lectures: 8 h
Wind, forces acting to produce wind; wind speed direction: units, measuring wind speed and direction, humidity, clouds and rainfa absorption, emission and scattering in atmosphere, radiation laws. systems, air masses and fronts: classifications; jet streams, local th tropical cyclones: classification; tornadoes, hurricanes.	its direction; all, radiation: Global wind nunderstorms,
Unit-3-Climate Change	Lectures: 8
Climate: its classification; causes of climate change, global warming and air pollution, aerosols, ozone depletion, acid rain, environmental issu climate.	its outcomes, les related to
Unit-4-Weather Forecasting	Lectures: 10
Weather forecasting: analysis and its historical background; need weather, types of weather forecasting; weather forecasting method choosing weather station; basics of choosing site and exposure, satellites in weather forecasting, weather maps; uncertainty and predictabilit forecasts.	of measuring ls, criteria of observations y, probability

Text Books/ Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Stephen Burt	The weather Observers Hand book	Cambridge University Press	2012	
S.R. Ghadekar	Meteorology	Agromet Publishers, Nagpur	2001	

: S.R. Ghadekar	Text Book of Agro meteorology	Agromet Publishers, Nagpur	2005	
I.C. Joshi	Aviation Meteorology	Hiamalyan Books	2014	
Resnick, Halliday and Walker	Physics	Wiley	2008	
G.R. Fowles and G.L. Cassiday	Analytical Mechanics	Cengage Learning	2005	

SEMESTER – III

Course Title: Special Theory of Relativity

L	Т	Р	Total Credits
3	1	0	4

Course Outcomes

CO1	Revision of coordinate systems and understanding Non-inertial frames of reference
CO2	Learning of the special theory of relativity- postulates of the special theory of relativity involving Lorentz transformations on space-time
CO3	Learn the Relativistic kinematics Lorentz transformations on space-time and other four vectors, four-vector notations, space-time invariant length, length contraction, time dilation, mass-energy relation, Doppler effect,
CO4	light cone and its significance, problems involving energy momentum conservations

Course Content

Unit-1-Non-inertial systems	Lectures: 18 h
-----------------------------	-------------------

Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

Unit-2-Introduction to Relativity	Lectures:
	18 h

Origin and significance of Special theory of relativity, Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations, Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Relativistic Doppler effect.

Unit-3-Relativistic Kinematics	Lectures:	
	18 h	
Variation of mass with velocity. Relativistic Momentum, Relativistic k	inetic energy,	
Massless Particles. Mass-energy Equivalence. Rest mass energy,	Relativistic	
Kinematics. Lorentz Transformations, Transformation of Energy and Mome		
Transformation of Force, Minkowski space. The invariant interval, light co	one and world	
lines. Space-time diagrams. Time-dilation, length contraction and twin pa	aradox.	
Unit-4- Relativistic dynamics	Lectures:	
	18 h	

Four-vectors: space-like, time-like and light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics: Application to two-body decay of an unstable particle. Acceleration of charged particle by constant electric field, transverse Electric field..

AUTHOR	TITLE	Publisher	Year of publication	ISBN
SK Bose	An Introduction t General Relativity	Wiley Eastern Limited, New Delhi	1980	
RK Patharia	Theory of Relativity	Hindustan Pub. Delhi	1974	
R. Resnick	Introduction to Special Relativity	John Wiley and Sons	2005	

Course Title: Elements of Modern Physics

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

CO1	Have the knowledge of demarcation of classical physics and modern			
<u> </u>	Appreciates the understanding of plank's theory of rediction and have the			
002	Appreciates the understanding of plank's theory of radiation and have the			
	fundamental understanding of dual nature of light			
CO3	Understand the theory of quantum measurements, wave packets and			
	uncertainty principle			
CO4	Learning about the wave mechanics and associated mathematical			
	formulations			
CO5	Learning the quantum concepts of particle being in different potentials with a			
	few specific cases of potential shapes			
CO6	Understanding the properties of nuclei, radioactive decay and nuclear			
	reactions explained by quantum mechanics			
CO7	Understanding of good knowledge of lasing action (stimulated emission of			
	radiation, optical pumping and population inversion), construction of different			
	laser systems and their working with specific examples in various fields			
L				

Course Content

Unit-1- Origin of Quantum Theory	Lectures:
	13

Planck's quantum, Planck's constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions

Unit-2-Wave-Particle Duality & Schrodinger Wave Equation Lectures: 14

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from Wave Packets impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle. Energy-time uncertainty principle- application to virtual particles and range of an interaction. Two slit interference experiment with photons, atoms and particles, linear superposition principle as a consequence; Matter waves and wave amplitude. Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; Probability and probability current densities in one dimension.

Unit-3- One Dimensional Problems	Lectures: 4		
One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions,			
normalization; Quantum dot as example; Quantum mechanical scattering and			
tunnelling in one dimension- across a step potential & rectangular potential barrier.			
Unit-4- Nuclear Physics Lecture			
	15		

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay-energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. Fission and fusion- mass deficit, relativity and generation of energy; Fission – nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving

stellar energy (brief qualitative discussions).	
Unit-5- Lasers & its applications	Lectures: 8
Einstein's A and B coefficients. Metastable states. Spontaneous and Stir emissions. Optical Pumping and Population Inversion. 3-Level and 4-Level	mulated vel Lasers.
Ruby Laser and He-Ne Laser. Basic lasing. Principle of Holography. Red	cording and
Reconstruction Method. Theory of Holography as Interference between	two Plane
Waves. Point source holograms.	
Ruby Laser and He-Ne Laser. Basic lasing. Principle of Holography. Reconstruction Method. Theory of Holography as Interference between Waves. Point source holograms.	cording and two Plane

Elements of Modern Physics Practical	Practicals: 36
	h

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out precise measurements and handling sensitive equipment.

- To determine the wavelength of H-alpha emission line of Hydrogen atom.
- To determine work function of material of filament of directly heated vacuum diod
- To determine the ionization potential of mercury.
- To study the Photo-electric effect.
- To determine the Planck's constant using LEDs of at least 4 different colours.
- To determine the Planck's constant using black body radiation and photo-detector
- Dependence of scattering angle on kinetic energy and impact parameter in Rutherford scattering (mechanical analogue).
- To determine the absorption lines in the rotational spectrum of lodine vapour
- To determine (i) wavelength and (ii) angular spread of He-Ne laser plane diffraction grating.

• To setup the Millikan oil drop apparatus and determine the charge of an electron

Text Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN

Rich Meyer, Kennard, Coop, 2002	Introduction to Modern Physics	Tata Mc-Graw Hill	2002	978- 0070995420
David J. Griffith	Introduction to Quantum Mechanics	Pearson Education	2005	978- 1316646519
Arthur Beiser	Concepts of Modern Physics	McGraw-Hill.	2002	978- 0070151550
J.R. Taylor, C.D. Zafiratos, M.A. Dubson	Modern Physics for Scientists and Engineers	PHI Learning	2004	978- 0138057152
R. Gautreau and W. Savin, 2 nd Edn,	Schaum`s outline of Theory and Problems of Modern Physics	Tata McGraw-Hill Publishing Co. Ltd.	1999	0070230625

Course Title: OOPS using C++

L	Т	Р	Total Credits
3	0	1	4

Course content and syllabus

	Teaching Hours
Unit I: Introduction	14 h
Difference between C and C++, Procedure Oriented and Object-Oriented Approach, Basic Concepts: Objects, classes, Principals like Abstraction, Encapsulation, Inheritance and Polymorphism. Dynamic Binding, Message Passing, Characteristics of Object-Oriented Languages	
Unit II: Classes & Objects	13 h
Abstract data types, Object & classes, attributes, methods, C++ class declaration, Scope resolution operator, Friend Functions, Inline functions, Constructors and destructors, instantiation of objects, Types of Constructors, Static Class Data, Array of Objects, Constant member functions and Objects, Memory management Operators	
Unit III: Inheritance and Polymorphism	17 h
Inheritance, Types of Inheritance, access modes – public, private & protected, Abstract Classes, Ambiguity resolution using scope resolution operator and Virtual base class, Aggregation, composition vs classification hierarchies, Overriding inheritance methods, Constructors in derived classes, Nesting of Classes.	
runtime, Function Overloading, Operator Overloading (Unary and Binary), this pointer, Virtual Functions, Pure virtual functions.	
Unit IV: Strings, Files and Exception Handling	10 h

Manipulating strings, Streams and files handling, Formatted and Unformatted Input output Exception handling: Try, Catch and Block Introduction to Generic Programming – function template, class Template

List of Experiments:

- 1. Creation of objects in programs and solving problems through them
- 2. WAP in C++ to find the sum of individual digits of a positive integer.
- 3. WAP in C++ to generate the first n terms of the sequence
- 4. WAP to find both the largest and smallest number in a list of integers.
- 5. WAP to illustrate New and Delete Keywords for dynamic memory allocation
- 6. Different use of private, public member variables and functions and friend functions.
- 7. Use of constructors and destructors.
- 8. Operator overloading
- 9. Use of inheritance and accessing objects of different derived classes.
- 10. Illustrate the concept of multilevel and multiple inheritance.
- 11. Programs of pointers
- 12. Program on array pointer using its own name as pointer.
- 13. Polymorphism and virtual functions (using pointers).
- 14. Programs on Exception Handling

Course Learning Outcomes:

The student will be able to

- 1. Articulate the principles of object-oriented problem solving and programming.
- 2. Outline the essential features and elements of the C++ programming language.
- 3. Explain programming fundamentals, including statement and control flow and recursion.
- 4. Apply the concepts of data abstraction, function abstraction, inheritance, overriding, overloading, and polymorphism.
- 5. Apply the concepts using objects and data abstraction, class, and methods in function abstraction.
- 6. Analyze, write, debug, and test basic C++ codes using the approaches introduced in the course.
- 7. Analyze problems and implement simple C++ applications using an object-oriented software engineering approach.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
E Balagurusamy	Object Oriented Programming with C++ (2017) 7 th ed.	McGraw Hill Education	2017	9352607996
Schildt H.	C++: The Complete Reference,	Tata McGraw Hill	2003	007053246X
Robert Lafore	Object Oriented Programming in Turbo C++	Galgotia Publications	1991	8185623228
Walter Savitch	Problem solving with C++ :The Object of Programming	Pearson Education.	2002	0321136640

Course Title: ENG104 (Fundamentals of Communication)

L	Т	Р	Total Credits
2	0	0	2

Course Contents/syllabus:

	Teaching
	hours
Unit I: Basic Concepts in Communication	9 h
 Definition, Nature and Role of Communication 	
 Communication Networks: Flow, Medium and Channel 	
 Barriers to Communication 	

 SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis 	
Unit II: Communication Types	9 h
 Introduction of Communication Skills (Listening, Speaking, Reading and Writing) Nonverbal Communication: Functions and Effective use KOPPACT (Kinesics, Oculesics, Proxemics, Paralanguage, Artifacts, Chronemics, Tactilics). 	
Unit III: Digital Literacy and Social Media	8 h
 Importance of Digital Literacy Netiquette E-mail Etiquette Advantages/Disadvantages of social media Effective ways of using social media Blogs/Content writing Professional Profile on Web 	
Unit IV: Gateway to Industry	10 h
 Resume Writing Cover Letter Interview Skills LinkedIn Profile Writing LinkedIn Recommendations 	

Course Learning Outcomes:

- To help students develop skills in the areas of vocabulary, grammar, presentation, and interactive communication so that any deficiencies in either skills or their application do not interfere with communication.
- Prerequisites: Good Listening, Speaking, Reading, and Writing Skills

Books/literature

AUTHOR	TITLE	Publisher	Year of publication	ISBN
P. D. Chaturvedi Mukesh Chaturvedi	Business Communication: Concepts, Cases and Applications	Pearson Education	2006	9788131701720
Meenakshi Raman and Prakash Singh	Business Communication	Oxford Press	2012	9780198077053
Jeff Butterfield	Soft Skills for Everyone	Cengage Learning	2017	9789353501051

Course Title: Electrical Circuits and Network Skills

L	Т	Р	Total Credits
3	0	0	3

Course Outcomes

CO1	Learn about different types of circuits, different between AC and DC, and how to define them in scientific terms.
CO2	Define different circuits and how to make them in the lab for different purposes.
CO3	learning about motors and ways to generate AC and DC and how to convert former to the later.
CO4	Learn about the importance of diode and rectifiers and how to connect them to AC and DC
CO5	Determine and learn about the wiring and how to keep home/circuits safe.

Course Content

Unit-1-Introduction to Electrical Principles & Circuits	Lectures: 10		
Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-			
parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter,			
voltmeter and ammeter. Main electric circuit elements and their combin	nation. Rules to		
analyze DC sourced electrical circuits. Current and voltage drop acros	s the DC circuit		
elements. Single-phase and three-phase alternating current sources. R	lules to analyze		
AC sourced electrical circuits. Real, imaginary and complex power con	nponents of AC		
source. Power factor. Saving energy and money.	-		
Unit-2-Electrical Drawing and Symbols	Lectures: 6 h		
Drawing symbols. Blueprints. Reading Schematics. Ladder diagrams. Electrical			
Schematics. Power circuits. Control circuits. Reading of circuit schem	atics. Tracking		
the connections of elements and identify current flow and voltage drop.			
Unit-3-Generators and Transformers Lectures: 5 h			
DC Power sources. AC/DC generators. Inductance, capacitance, and impedance.			
Operation of transformers.			
Unit-4-Electrical Motors	Lectures: 4 h		
Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources			
to control heaters & motors. Speed & power of ac motor.			
Unit-5-Solid-State Devices	Lectures: 3 h		
Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in			
shunt. Response of inductors and capacitors with DC or AC sources.			

Unit-6-Electrical Protection & Wiring	Lectures: 8 h		
Relays. Fuses and disconnect switches. Circuit breakers. Overload de	vices. Ground-		
fault protection. Grounding and isolating. Phase reversal. Surge protec	tion. Interfacing		
DC or AC sources to control elements (relay protection device). Di	fferent types of		
conductors and cables. Basics of wiring-Star and delta connection. Vo	oltage drop and		
losses across cables and conductors. Instruments to measure current, voltage, power			
in DC and AC circuits. Insulation. Solid and stranded cable. Condu	it. Cable trays.		
Splices: wire nuts, crimps, terminal blocks, split bolts, and solder.	Preparation of		
extension board			

Text Books

Authors	Title	Publisher	Ed/year	ISBN No
K.A. Smith and R.E. Alley	Electrical Circuits	Cambridge University Press	1992	978- 1847022721
M G Say	Performance and design of AC machines	CBS Publishers & Distributors Pvt. Ltd.	2002	978- 8123910277
B L Theraja	A textbook in Electrical Technology.	S Chand & Co	1959	978- 8121924900

Course Title: Electromagnetic Theory

L	Т	Р	Total Credits
3	0	1	4

Electromagnetic Theory	Theory: 54 h, Pract .:
	36 h

Course Outcomes

CO1	Achieve an understanding of Maxwell's equations and applications to deduce wave equation, electromagnetic field energy, momentum and angular momentum density. Understanding of the EM propagations in free space, dielectric and metals
CO2	Understanding the reflections, refraction and polarization of EM waves and calculate their coefficients
CO3	Learning of different type of polarization of EM waves and their production and detection
CO4	Application of the concepts of light propagation in optical fibers, light wave communication systems

Course Content

Unit-1-Maxwell Equations	Lectures: 10
--------------------------	--------------

Review of Maxwell's equations, Displacement Current, The Continuity Equation, Poynting's Theorem, The Wave Equation, Sinusoidal Waves, Electromagnetic (EM) Energy Density, Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density, Boundary Conditions: Reflection and Transmission
Unit-2-EM Wave Propagation in Various Media	Lectures: 17
EM Wave in Unbounded Media: Plane EM waves through vacuum	and isotropic
dielectric medium, transverse nature of plane EM waves, refractive inde	x and dielectric
constant, wave impedance. Propagation through conducting media, r	elaxation time,
skin depth. Wave propagation through dilute plasma, electrical conduct	tivity of ionized
gases, plasma frequency, refractive index, skin depth, application t	to propagation
through ionosphere. EM Wave in Bounded Media: Boundary condition	ons at a plane
interface between two media. Reflection & Refraction of plane waves at	plane interface
between two dielectric media-Laws of Reflection & Refraction. Fresnel'	s Formulae for
perpendicular & parallel polarization cases, Brewster's law. Reflection &	& Transmission
coefficients. Total internal reflection, evanescent waves. Metallic refl	ection (normal
Incidence)	
Unit 2 Interference, Diffraction and Balarization	Looturoci 10

Unit-3-Interference, Diffraction and PolarizationLectures: 18

Interference: Theory of interference, Fresnel's Biprism, displacement of fringes, fringes with white light, Stoke's law, interference in thin films, non-reflecting films, Newton's rings, Michelson's interferometer, Fabry-Perot interferometer, Diffraction: Fraunhoffer diffraction: single slit, circular aperture, diffraction grating, Rayleigh's criterion for resolution, resolving power of a diffraction grating, Fresnel diffraction at a single slit and circular aperture, Fresnel's half period zones, zone plate; Polarization: Polarization of plane harmonic waves, linear, circular and elliptical polarization, Malus' law, polarization by scattering, Birefringence, quarter- wave and half-wave plates. Double refraction, Nico prism, an analysis of circularly and elliptically polarized light.analysis of circularly and elliptically

Unit-4-Wave-Guides and Optical Fibres

Lectures: 9

Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission. Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).

Electromagnetic Theory Practical	Practicals: 72
	h
Objective: The laboratory exercises in this section have been so de	esigned that the
students learn to verify some of the concepts learnt in the theory co	urses. They are
trained in carrying out precise measurements and handling sensitive e	equipment
 To study the reflection, refraction of microwaves 	
• To determine the refractive index of liquid by total internal	reflection using
Wollaston's air-film	
 To determine the refractive Index of (1) glass and (2) a liquid 	by total internal
reflection using a Gaussian eyepiece.	
 To verify the law of Malus for plane polarized light. 	
 To analyze elliptically polarized Light by using a Babinet's com 	pensator
 To study the polarization of light by reflection and determine the 	polarizing angle

- To study the polarization of light by reflection and determine the polarizing an for air-glass interface
- To study Polarization and double slit interference in microwaves
- To determine the specific rotation of sugar solution using Polarimeter.
- To verify the Stefan's law of radiation and to determine Stefan's constant.
- To study dependence of radiation on angle for a simple Dipole antenna

Text Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
D.J. Griffiths	Introduction to Electrodynamics, 4th ed.	Prentice Hall India, New Delhi	2012	978-1108822909

A.Z. Capri and P.V. Panat	Introduction to Electrodynamics	Narosa Publishing House	2010	978-8173193293
L. D. Landau and E. M. Lifshitz & L. P. Pitaevskii	Electrodynamics of Continuous Media	Oxford	2005	978-8181477934
John David Jackson	Classical Electrodynamics,3rd Ed	Wiley	1998	978-0471309321
S. P. Puri	Classical Electrodynamics	Narosa	2011	978-8184875843

Course Title: Thermal Physics

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

CO1	Comprehend of the basics of thermodynamics, understanding the concept of temperature, work and heat and their mutual conversions within each other, Zeroth law, first law of thermodynamics and its application in calculating the heat flow into and work done by a system
CO2	Second law of thermodynamics and to relate it to the operation of heat engines, particularly the Carnot engine
CO3	Understand the basis of entropy and its relation to the second law of thermodynamics and calculate entropy changes in different processes
CO4	Understand the microscopic picture to link with the microscopic state variables be able to derive and use Maxwell's equations
CO5	Learning of the basic concept of kinetic theory of gases and their distribution pertaining to the gas particles (Maxwell-Boltzman distribution) and calculate properties of gases including the heat capacity and mean free path
CO6	Use the theory of equi-partition to relate the structure of the molecules to the measured heat capacity
C07	Learn about the real gas equations, Van der Waal equation of state, the Joule-Thompson effect
Course C	ontont

Course Content

Unit-1-Introduction to Thermodynamics	Lectures: 18	
Zeroth and First Law of Thermodynamics: Extensive and intensive Th	ermodynamic & Concont of	
Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion		
Unit-2-Second Law of Thermodynamics & Entropy Lectures:		
Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & performance, 2 nd Law of Thermodynamics: Kelvin- Planck and Clausic and their Equivalence. Carnot's Theorem. Applications of Sec	coefficient of us Statements ond Law of	

Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero.

Unit-3-Maxwell's Relations and Thermodynamic Potentials Lectures: 18

Maxwell's Relations: Derivations and applications of Maxwell'sRelations, Maxwell's Relations (2) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations.

Lectures: 18

Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. Behavior of Real Gases: Deviations from the Ideal Gas Equation. TheVirial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van der Waal

Gases. Temperature of Inversion. Joule-Thomson Cooling.

Thermal Physics Practical

Practicals: 72

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out precise measurements and handling sensitive equipment.

- To measure the coefficient of linear expansion for different metals and alloys.
- To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer.
- To measure the thermal conductivity and thermal diffusivity of a conductor.
- To determine Mechanical Equivalent of Heat.
- To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- To determine the value of Stefan's Constant of radiation.
- To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee disc method.
- To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its two Junctions.
- To determine thermal conductivity of a bad conductor disc using constant current source for heating and thermocouples for temperature measurements.

Text Books:

•	
Authors	Title
Carl S. Helrich	Mode
	The

Authors	litle	Publisher	Ed/year	ISBN NO
Carl S. Helrich	Modern Thermodynamics with Statistical Mechanics	Springer	2009	978- 3642099090
Sears & Salinger	Thermodynamics, Kinetic Theory & Statistical Thermodynamics	Narosa Publishing House	1988	978- 8185015712

M.W. Zemansky and Richard	Heat and Thermodynamics	McGraw-Hill	1981	978- 0070700352
Dittman				
S.J. Blundell	Concepts in Thermal	Oxford	2nd Ed.	978-
and K.M. Blundell	Physics	University	2012	0199562107
		11000		
C. Kittel and H.	Thermal Physics	W. H.	Second	978-
Kroemer		Freeman	edition,	0716710882
			1980.	

Course Title: Quantum Physics

L	Т	Р	Total Credits
3	0	1	4

Course Outcomes

•

CO1	Review on the inadequacies of classical mechanics in understanding
	atomic/subatomic physical phenomenon and the introduction of quantum
	mechanics, learning of quantum formulation with Schrodinger equation

CO2	Learning of the mathematical tools of quantum mechanics; wave function,
	probabilistic interpretation are exposed to the students
CO3	Through understanding of the behaviour of quantum particle facing step, barrier
	and potentials, exposure to the solution of non-relativistic hydrogen atom
CO4	Appreciates the influence of electric and magnetic fields on atoms/molecules

Course Contents

Unit-1- The Schrodinger Equation & its Mathematical Implication	Lectures:	
	18	
Time dependent Schrodinger equation and dynamical evolution of a q Properties of Wave Function. Interpretation of Wave Function Pri probability current densities in three dimensions; Conditions for Physica of Wave Functions. Normalization. Linearity and Superposition Principles and Eigenfunctions. Position, momentum and Energy operators; c position and momentum operators; Expectation values of position and Wave Function of a Free Particle. Time independent Schroding Hamiltonian, stationary states and energy eigenvalues; expansion of wavefunction as a linear combination of energy eigenfunctions; General time dependent Schrodinger equation in terms of linear combinations states; Application to spread of Gaussian wave-packet for a free p dimension; wave packets, Fourier transforms and momentum space Position-momentum uncertainty principle	uantum state; robability and I Acceptability s. Eigenvalues ommutator of d momentum. ger equation- f an arbitrary solution of the s of stationary article in one wavefunction;	
Unit-2- One Dimensional Quantum Problems Lectures: 18		
General discussion of bound states in an arbitrary potential- continuity of wavefunction, boundary condition and emergence of discrete energy levels; application to one- dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite polynomials; ground state, zero point energy & uncertainty principle		
Unit-3-Quantum Theory of Hydrogen-like Atoms	Lectures: 18	
Time independent Schrodinger equation in spherical polar coordinates;	separation of	

variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wavefunctions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers I and m; s, p, d,.. shells.

Unit-4- Atomic & Molecular Physics Lectures: 18

Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton. Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). Pauli's Exclusion Principle. Symmetric & Antisymmetric WaveFunctions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector Model. Spin-orbit coupling in atoms-L-S and J- J couplings. Hund's Rule. Term symbols. Spectra of Hydrogen and Alkali Atoms (Na etc.).

Quantum Mechanics and Applications Practical	Practicals: 36
--	----------------

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out precise measurements and handling sensitive equipment.

- To study Zeeman effect: with external magnetic field.
- To study Quantum efficiency of CCDs.
- To Study Electron spin resonance for determination of magnetic field as a function of the resonance frequency.
- To show the quantum tunneling effect in tunnel diode using I-V characteristics
- Use C/C++/Scilab for solving the following problems based on Quantum Mechanics to solve the s-wave Schrodinger equation for the ground state & the first excited state of the hydrogen atom. Obtain the energy eigenvalues and plot the corresponding wavefunctions.
- Use C/C++/Scilab for solving the following problems based on Quantum Mechanics to solve the s-wave radial Schrodinger equation for an atom for the screened coulomb potential. Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction.

- Use C/C++/Scilab for solving the following problems based on Quantum Mechanics to solve the s-wave radial Schrodinger equation for an atom for anharmonic oscillator potential for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function.
- Use C/C++/Scilab for solving the following problems based on Quantum Mechanics to solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule using morse potential. Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Text Books:

Authors	Title	Publisher	Ed/year	ISBN No
P.M.Mathews and K.Venkatesan	A Text book of Quantum Mechanics,,	McGraw Hill	2nd Ed.,2017,	978- 0070146174
D.J. Griffith,	Introduction to Quantum Mechanics	Cambridge India	2nd Ed. 2016	978- 1316646519
Robert Eisberg and Robert Resnick	Quantum Mechanics of Atoms, Molecules, Solids, Nuclei and Particles	Wiley	2nd Edn., 2006	978- 8126508181

G. Aruldhas	Quantum	PHI Learning	2nd Edn.	978-
	Mechanics	of India	2008	8120336353
Arno Bohm	Quantum	SPRINGER	3rd Edn.,	978-
	Mechanics:	(SIE)	2003	8181280725
	Foundations & Applications,			

Course Title: Programming in Python

L	Т	Р	Total Credits
3	0	1	4

Course Contents/syllabus:

	Teaching Hours
Unit I: Introduction	13 H

History of Python, Need of Python Programming, Applications, Basics of Python Programming, Using the IDLE, Running Python Scripts, Installation of Jupyter Notebook, Variables, Assignment, Keywords, Input-Output, Indentation, comments	
Unit II: Types, Operators and Expressions	14 H
Types – Integers, Strings, Booleans; Operators- Arithmetic, Comparison (Relational), Assignment, Logical, Bitwise, Membership, Identity, Precedence, Control Flow- if, if-elif-else, for, while, break, continue, loops, types of loops.	
Unit III: Data Structures in Python	14 H
Lists – Operations, Slicing, Methods; Tuples: Creating, Printing, properties of tuples, Sets, Dictionaries, Sequences and their properties. Defining Functions, Calling Functions, Passing and Returning Arguments, Scope of the Variables in a Function – Global and Local Variables	
Unit IV: Python packages and OOPS	13 H
Introduction to PIP, Installing Packages via PIP, Using Python Packages, OOPs in Python, Classes, self-variable, Methods, Constructor Methods.	

List of Experiments

(Total:36 Hours)

- 1. Perform installation of python, of jupyter notebook
- 2. Execute a basic python program with a print message.
- 3. WAP to Check the Python version on command line
- 4. WAP to display the current date and time.
- 5. WAP to get Multiple inputs From a User in One Line
- 6. WAP which accepts the user's first and last name and print them in reverse order with a space between them.
- 7. WAP to implement show Operators Precedence and loops.
- 8. WAP to declare, access and print a dictionary

- 9. WAP to check whether a given key already exists in a dictionary.
- 10. WAP to implement functions: call by value
- 11. WAP to show use of local and global variables
- 12. WAP to implement classes and objects in python.

Course Learning Outcomes: After studying this course students will be able to:

- 1. Understand the basics of programming and implement basic python programs, input output functions, types and operators.
- 2. Develop programs using conditional, branching, iteration.
- 3. Learn the functions declaration, implementation, arguments.
- 4. Develop an application using the concepts of list, dictionary, tuples solve engineering and/or scientific problems
- 5. Implement object-oriented principles via python programming.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Paul Barry	Head First Python	O'Reilly Media, Inc.	2016	9781491919538
John V. Guttag	Introduction to computation and programming using python	PHI Publisher.	2016	978- 0262529624
Kenneth A. Lambert	Fundamentals of Python	Cengage	2019	9789353502898

Vamsi Kurama	Python Programming: A Modern Approach	Pearson	2018	978- 9332587526

Course Title: Professional Etiquette and Workplace Communication

L	Т	Р	Total Credits
2	0	0	2

Course Learning Outcomes: At the end of this course, students will be able to:

- Understand the nature, importance, and process of written communication.
- Deliver effective presentations in contexts that may require power point, extemporaneous or impromptu oral presentations
- Acquire and exhibit professional etiquette.
- Respect other cultures and develop rapport in a multicultural society, thereby developing a broadened unbiased perspective.

Course Contents/syllabus:

	Teaching Hours
Unit I—Writing Process & Workplace Communication	9 hrs
 Writing process: Pre-writing, writing & post writing 7Cs of Writing Business Letters Notice Agenda Minutes of meeting Virtual Meeting and Video Conferencing Nuances of conducting effective meetings 	
Unit II—Presentation Skills	10 hrs
 Planning, preparation, Practice, Performance Audience analysis Analyzing the nonverbal communication Story-Telling Methods of Delivery: Impromptu, Extemporaneous, Memorisation, Manuscript, Outlining 	
Unit III— Professional Etiquette	8 hrs

 Power Dressing Telephonic Manners/ Voice mail etiquette Business Salutation Etiquette Different Cultural Etiquette & Protocol Teamwork Time-Management 	
Unit IV- Cross Cultural Communication	9 hrs
 Cross Cultural Communication: meaning and significance Definition of Culture Elements of Culture Characteristics of Culture Culture and Context Cultural Shock: Meaning and Stages Ethnocentrism, Stereotyping, Xenophobia and Cultural Relativism Strategies for Effective Communication in multicultural context Acculturation 	

Text / Reference Books:

Herta	Effective	McGraw	2017	978-0070187757	640
Mur	Business	Hill Education			
phy	Communication				
, Herbert Hildebrandt,					
Jane					
Thomas					

Karen Schneiter Williams, Joyce P Log an, A.C. Buddy Krizan, Patricia Merrier	Communica ting in Business	Cengage Learning India Private Limited	2012	978-8182093195	712
Ryan Sharma	The Unwritten Rules of Professional Etiquette	Habile Press	2020	978- 1734980509	122

Course Title: Basic Instrumentation Skills

L	Т	Ρ	Total Credits
3	0	0	3

Course Outcomes

CO1	Learn error calculation and the importance of errors in scientific instruments.
CO2	Measure voltage-current using multimeter and learn to operate, read and use the multimeter
CO3	Learn techniques about continuous and pulsed signals and learn to use LCR circuit

CO4 Understanding oscilloscope, its working principle, and using it for day-to-d	ay		
scientific measurements			
CO5 Learn to use digital devices and learn ease of working with them.			
Course Content			
Unit-1-Introduction to Measurements Lectures:	5		
Instruments accuracy, precision, sensitivity, resolution range etc. Errors	in		
measurements and loading effects. Multimeter: Principles of measurement of	dc		
voltage and dc current, ac voltage, ac current & resistance. Specifications of	а		
multimeter and their significance	_		
Unit-2-Electronic Voltmeter Lectures:	5		
Advantage over conventional multimeter for voltage measurement with respect to inp	ut		
impedance and sensitivity. Principles of voltage, measurement (block diagram only	/).		
Specifications of an electronic Voltmeter/ Multimeter and their significance. A	١C		
millivoltmeter: Type of AC milli voltmeters. Block diagram ac milli-voltmete	эr,		
specifications and their significance.	_		
Unit-3-Signal Generators and Impedance Bridges Lectures:	<u> </u>		
Block diagram, explanation and specifications of low frequency signal generator a	nd		
pulse generator. Brief idea for testing, specifications. Distortion factor meter, wave			
analysis. Block diagram of bridge. Working principles of basic (balancing type) Ri			
Motor Digital CP bridges	Q-		
Unit 4. Oscilloscopo	0		
Plack diagram of basis CPO. Construction of CPT. Electron gun, electrostatic fogusi	9 20		
and acceleration (Explanation only no mathematical treatment) brief discussion	ny on		
screen phosphor visual persistence & chemical composition. Time base operation	2011		
synchronization. Front panel controls. Specifications of a CRO and their significance	۸۱, ۵		
Lise of CRO for the measurement of voltage (dc and ac frequency, time period. Spec	io. Ici		
features of dual trace introduction to digital oscilloscope probes. Digital stora	ne		
Oscilloscope: Block diagram and principle of working	ge		
Unit-5-Digital Instruments	5		
Comparison of analog & digital instruments. Characteristics of a digital meter. Working	<u>-</u> na		
principles of digital voltmeter.	.9		
Unit-6-Digital Multimeter Lectures:	5		

Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy and resolution.

Text/ Reference Books

Authors	Title	Publisher	Ed/year	ISBN No
M G Say	Performance and design of AC machines	CBS Publishers & Distributors Pvt. Ltd	ELBS Edn 2005	978- 8123910277
S. Salivahanan & N. S.Kumar	Electronic Devices and circuits	Tata Mc-Graw Hill	4th edition	978- 9339219505
B L Theraja	A text book in Electrical Technology	(S Chand & Co.	1959	978- 8121902908
Subrata Ghoshal	Digital Electronics	Cengage Learning	2012	978- 9386858375

SEMESTER-V

Course Title: Nuclear Physics

L	Т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Become familiar with nuclear structure and its fundamental properties, concept of binding energy and binding energy curves explaining the nuclear fission and fusion
CO2	Learning about the nuclear models (liquid drop model, shell model) in explaining different properties of the nucleus
CO3	Revision of the process of radioactivity, decay law and emission of alpha, beta and gamma rays
CO4	Learning the mechanisms of the emission of alpha, beta and gamma rays, outlines of Gamow's theory of alpha decay and Pauli's theory of beta decay with the neutrino hypothesis, the electron capture, the fine structure of alpha particle spectrum, the Geiger-Nuttall law, the radioactive series
CO5	Understand the basics of nuclear reactions, reaction cross sections and types of nuclear reactions

Course Content

Unit-1-General Properties of Nuclei	Lectures:
	18
Constituents of nucleus and their Intrinsic properties, quantitative facts	s about mass,
radii, charge density (matter density), binding energy, average binding	g energy & its
variation with mass number, main features of binding energy versus	mass number
curve, N/A plot, angular momentum, parity, magnetic moment, elec	tric moments,
nuclear excites states.	

Unit-2-models	Lectures:	
	18	
Liquid drop model approach, semi empirical mass formula & significance	of its various	
terms, condition of nuclear stability, two nucleon separation energies, Fe	rmi gas model	
(degenerate fermion gas, nuclear symmetry potential in Fermi gas), evide	ence for nuclea	
shell structure, nuclear magic numbers, basic assumption of shell model,	, concept of	
mean field, residual interaction, concept of nuclear force.		
Unit-3-Radioactivity	Lectures:	
	18	
Alpha decay: basics of α -decay processes, theory of α -emission, Gamow	factor, Geiger	
Nuttall law, α-decay spectroscopy. Beta decay: energy kinematics for -de	ecay, positron	
emission, electron capture, neutrino hypothesis. Gamma decay: Gamma	rays emission	
& kinematics, internal conversion.		
Unit-4-Nuclear Reactions & Interactions	Lectures:	
	18	
Types of Reactions, Conservation Laws, kinematics of reactions, Q-va	alue, reaction	
rate, reaction cross section, Concept of compound and direct Reactio	n, resonance	
reaction, Coulomb scattering (Rutherford scattering). Energy loss due to ionization		
(Bethe-Block formula), energy loss of electrons, Cerenkov radiation.	Gamma ray	
interaction through matter, photoelectric effect, Compton scattering, pa	ir production,	
neutron interaction with matter.		

Text / Reference Books

Authors	Title	Publisher	Ed/year	ISBN No
K. Hyde	Basic Ideas and Concepts in Nuclear Physics	Institute of Physics	2004	978- 0750309806
Herald Enge	Introduction to Nuclear Physics	Addison-Wesley	1971	978- 0201018707

I.Kaplan	Nuclear Physics	Narosa	2002	978- 8185015897
E. Segre	Nuclei and Particles	W.A. Benjamin Inc	1965	978- 0805386011

Course Title: Solid State Physics

L	Т	Р	Total Credits
4	0	2	6

Course Outcomes

CO1	The ability to explain crystalline and amorphous structures, understanding about
	lattice, unit cell, miller indices, reciprocal lattice, concept of Brillouin zones
CO2	Understanding of the concept of Brang's X-ray diffraction by crystalline materials
CO3	Knowledge of lattice vibrations, phonons and specific heat of solids in view
	Einstein and Debye theory
CO4	Secured an understanding about the dielectric and ferroelectric properties of
	materials
CO5	Learning of the band theory of solids in understanding to differentiate
	conductors, insulators and semiconductors
CO6	Learning of the basic knowledge of the superconducting nature of the materials
	and their classifications

Course Contents

Unit-1- Crystal Physics	Lectures:
	18

Solids: Amorphous and Crystalline Materials. Lattice TranslationVectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor.

Unit-2-Elementary Lattice Dynamics and their Properties Lectures: 18

Lattice Vibrations and Phonons: Linear Monoatomic-Diatomic Chains. Acoustical and Optical Phonons. Qualitative description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein, Debye theories of specific heat of solids. T³ law. Dia-, Para-, Ferriand Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.

Unit-3- Dielectrics and Related Properties	Lectures:
	18

Polarization. Local Electric Field at an Atom.Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, TO modes. Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop.

Unit-4- Elementary Band Theory and SuperconductivityLectures:
18Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and
insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of

conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (04 probe method) & Hall coefficient. Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation)

Solid State Physics Practical	Practicals: 72
	h

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out precise measurements and handling sensitive equipment

- To measure the Magnetic susceptibility of Solids.
- Measurement of susceptibility of paramagnetic solution
- To measure the Dielectric Constant of a dielectric Materials with frequency
- To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance
- To determine the refractive index of a dielectric layer using Surface Plasmon resonance.
- To draw the BH curve of Fe using Solenoid and determination of energy loss using Hysteresis loop.
- To study the PE Hysteresis loop of a Ferroelectric Crystal
- To measure the resistivity and band gap energy of a semiconductor (Ge/Si) with temperature using four-probe method
- To determine the Hall coefficient of a semiconductor sample
- To determine the Coupling Coefficient of a Piezoelectric crystal.

Text/Reference Books:

Authors	Title	Publisher	Ed/year	ISBN No
Charles Kittel	Introduction to Solid State Physics	Wiley	2004	9788126535187
N.W. Ashcroft, N.D. Mermin	Solid State Physics	Cengage Learning	1976	8131500527
M.A. Wahab	Solid State Physics	Narosa Publications	2011	8184874936

Course Title: Analog Systems and Applications

L	Т	Р	Total Credits
4	0	2	6

Course Outcomes

CO1	Concept of N and P type semiconductors, learning of the carrier action (mobility and drift) and learning of the basic p-n junction device fabrication and characteristics under different biasing with its applications in rectifiers and voltage regulator systems
CO2	Learning of transistors NPN and PNP basic biasing configurations namely common base, common emitter and common collector, and also about current and voltage gain.
CO3	Biasing and equivalent circuits coupled amplifiers and feedback in amplifiers and oscillators
CO4	Learning the characterization of various devices namely PN junction diodes, LEDs, Zener diode, solar cells, PNP and NPN transistors. Also construct amplifiers and oscillators using discrete components
CO5	Demonstrate inverting and non-inverting amplifiers using op-amps
CO6	Learning of FETS as junction field effect transistors and metal oxide semiconduction FETSs, and their characteristics

Course Content

Unit-1-Semiconductor Diodes and their Applications	Lectures: 18
P and N type semiconductors. Energy Level Diagram. PN Junction Fabric	cation (Simple
Idea). Barrier Formation in PN Junction. Diode. Static and Dynamic	c Resistance.
Current Flow Mechanism in Forward and Reverse Biased Diode.	Current Flow
Mechanismin Forward and Reverse Biased Diode, V-I characteristics	of pn junction

diode. (1) Zener Diode and Voltage Regulation. (5) Rectifier I waveRectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculat Factor and Rectification Efficiency, Types of filters: L-filter, C-filter, LC an	Diode: Half- ion of Ripple d pi-filter	
Unit-2-Bipolar Junction Transistors	Lectures: 18	
N-P-N and P-N-P Transistors. Characteristics of CB, CEand CC Co Current gains α and β Relations between α and β . Load Line analysis of DC Load line and Q-point. Physical Mechanism of Current Flow. Active Saturation Regions. Transistor Biasing and Stabilization Circuits. Fixe Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equiv Analysis of a single-stage CE amplifier using Hybrid Model. Input Impedance. Current, Voltage and Power Gains.	onfigurations. Transistors. e, Cutoff and ed Bias and alent Circuit. and Output	
Unit-3-Amplifiers and Oscillators	Lectures: 18	
Classification of Class A, B & C Amplifiers. Two stage RC-coupled amplifier and its frequency response. Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. Oscillators: Components of oscillator: tank circuit, transistor amplifier, feedback circuit. Classification of oscillators based on method, nature of waveform, frequency of generated voltage Barkhausen's Criterion for self-sustained oscillations. Hartley & Colpitts oscillators		
Unit-4- Field effect Transistors and Operational Amplifiers	Lectures: 18	
 Black Box approach: Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open- loop and Closed-loop Gain. Slew Rate and concept of Virtual ground. Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, FETs and its classification, Advantages and disadvantages of FET; JFET: Fabrication Working mechanism, Drain and transconductance characteristics, pinch-off voltage 		
Working mechanism, Drain and transconductance characteristics, pine	T: Fabrication ch-off_voltage	

Analog Systems and Applications Practical	Practicals:
	72

Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out precise measurements and handling sensitive equipment.

- To study I-V characteristics of semiconductor diode.
- To Study I-V & power curves of solar cells, find maximum power point & efficiency.
- To study voltage regulation of zener diode
- To study the ripple factor for a half-wave rectifier with L filter, C-filter, pi-filter.
- To study the ripple factor for a full-wave rectifier with L filter, C-filter, pi-filter.
- To study the ripple factor for a bridge rectifier with L filter, C-filter, pi-filter.
- To study common emitter characteristics of a given transistor.
- To study the VI characteristics of PN junction diode
- To study the VI characteristics of Zener junction diode
- To determine the DC Load line and Q-point using Load line analysis of transister
- To add two dc voltages using Op-amp in inverting and non-inverting mode
- To analyse the use of an op-amp as an Integrator.
- To analyse the use of an op-amp as an Differentiator.

Text Books:

Authors	Title	Publisher	year	ISBN No

J. Millman and C.C. Halkias	Integrated Electronics	Tata Mc-Graw Hill	1991	978- 0070151420
J.D. Ryder	Electronics: Fundamentals and Applications	Prentice Hall	5th edition	978- 0132513715
R.A. Gayakwad	OP-Amps and Linear Integrated Circuit,	Prentice Hall	4th edition, 2000	978- 9332549913
A.S. Sedra, K.C. Smith, A.N. Chandorkar	Microelectronic circuits	Oxford University Press	7th edn, 2014	9780199476299
B.G.Streetman & S.K.Banerjee	Solid State Electronic Devices	PHI Learning	7th edn	978- 9332555082
U.Tietze, C.Schenk	Electronic circuits: Handbook of design & applications	Springer	2008	978- 3540004295

S.M. Sze	Semiconductor Devices: Physics and Technology	Wiley India	2002	978- 0470537947
M.H. Rashid	Microelectronic Circuits	Cengage Learning	2nd Edn	978- 1305635166
Thomas L. Floyd	Electronic Devices	Pearson India	9th edition	978- 0132549851

Course Title: Data Science and Analytics

L	т	Р	Total Credits
4	0	2	6

Course Outcomes

CO1	Understand the basics principles and concepts of data science.
CO2	Implement techniques to manage, manipulate, cleanse and analyse data.

CO3	Analyze on the performance of various models and the quality of the results.
CO4	Gain the insights from the data with the help of statistical inferences.
CO5	Transform the real time data for performing data analysis.

Course Content

Unit I: Introduction	11 H

Introduction to Data Science, Sources of Data, Information Commons, Data Science Project Life Cycle, Data Definitions and Analysis Techniques: Elements, Variables, and Data categorization,Levels of Measurement, Data management and indexing

Unit II: Data Preprocessing	11 H

Introduction to Data Preprocessing, Reading, Selecting, Filtering Data, Filtering Missing Values, Manipulating, Sorting, Grouping, Rearranging, Ranking Data

Unit III: R programming	
-------------------------	--

12 H

R Basics- data types and objects, control structures, data frames, Feature Engineering - scaling, encoding, Model fitting using R, Formulation of Hypothesis.

Unit IV: Statistical Measures and Performance metrices	

Handling of CSV, Measures of Central Tendency (Mean, Median, and Mode), Measures of Variability. Loss Function and Error: Mean Squared Error, Root Mean Squared Error, Model Selection and Evaluation criteria: Accuracy, Precision, F1 score, Recall Score, Sensitivity, Specificity.

Data Science and Analytics Practical	Practicals: 72
 Perform linear regression using a dataset. 	
 Perform data pre-processing techniques on real datasets. 	
• Analyze behavior of customers for any online purchase model.	
 Implement performance evaluation of compared models for real 	-life dataset.

- Automate email classification task.
- Analyze twitter data for real and fake news.
- Implement data frames for collection of series.

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Hadley Wickham, Garrett Grolemund	R for data science: Import, Tidy, Transform, Visualize, And Model Data	O'Reilly Media	2017	978- 1491910399

Carl Shan, Henry Wang, William Chen, Max Song.	The Data Science Handbook: Advice and Insight from 25 Amazing Data Scientists.	The Data Science Bookshelf.	2016	978- 0692434871
Roger Peng	R Programming for Data Science	Lulu.com	2012	978- 1365056826
James, G., Witten, D., T., Tibshirani, R.	An Introduction to statistical learning with applications in R	Springer.	2013	978- 1461471370

SEMESTER - VI

Core course: Particle Physics

4 0	0	4
-----	---	---

Course C	Outcomes	
CO1	Become familiar with interaction of radiation with charged detection	particles and
CO2	Learning about the elementary particles	
CO3	Understanding the properties and reaction mechanism c particles	f elementary
CO4	Learning the physics behind the particle detectors and acceler	ators
Course C	Content	
Unit-1-Ir	teraction of radiation and detection	Lectures: 18
positrons heavier c with ma Scintillati electrom bubble c	s, Positron annihilation in condensed media, Stopping power charged particles, derivation of Bethe-Bloch formula, interaction of tter and Gas-filled detectors, proportional and Geiger-Mul ion detectors, solid-state detectors, Cherenkov effect, agnetic and hadron, specialized detectors, solid state nuclear tra- hambers, nuclear emulsions.	and range of f gamma rays ler counters, calorimeter- ack detectors,
Unit-2-E	lementary Particles	Lectures: 18
Historica Classifica interactic interactic Yukawa Introduct units.	I introduction, fermions and bosons, particles and antiparticles, ation of particles, types of interactions, electromagnetic, weak, s ons, gravitational ons, Quantum numbers and conservation laws, isospin, charge o theory, ion to quarks and qualitative discussion of the quark model, high	trong conjugation, n energy physic
Unit-3-P	article Properties	Lectures: 18

Properties and life time of muon, pions: Determination of mass,

spin and parity. Lifetime of neutral pion and isotopic spin. Strange particles: V particles, charged K-mesons,

mass and life time for charged K-mesons. Observations of different strange particles (Λ° , Σ° , Σ^{\pm} , Ξ° , Ξ^{+} , Ω), strange particle production and decay. Strangeness and Hypercharge.

Unit-4Particle Accelerators	Lectures:
	18

Accelerators, linear accelerators, cyclic accelerators, ion sources, focussing, stability, electron synchrotron, colliding beam machines, particle beams for fixed target experiments, CERN Super Proton Synchrotron (SPS) and Fermilab Tevatron.

Text Books

Authors	Title	Publisher	Ed/year	ISBN No
Griffiths D	Introduction to Elementary Particles	Wiley	2008	978- 3527406012
D.H. Perkins	Introduction to High Energy Physics	Cambridge University	2000	978- 0521621960
I.S. Hughes	Elementary Particles	Cambridge University	1991	978- 0140802771
R. P. Feynman, S. Weinberg	Elementary Particles and the Laws of Physics	Cambridge University	1999	978- 0521658621

M.P. Khanna	Introduction to	Prentice Hall	1999	978-
	Particle Physics	India Learning		8120312685
		Private Limited		

Course Title: Statistical Physics

L	Т	Р	Total Credits
4	0	2	6

Course Outcomes

CO1	Understand the basic concept of mathematical statistics and classical statistics defining the concepts of micro/macro states, ensembles, phase space and thermodynamic probability and partition function
CO2	Learning the derivations for classical black body radiation. Wien's law, Rayleigh Jeans law, ultraviolet catastrophe. Saha ionization formula
CO3	Understanding of the three different distribution schemes of particles in terms of their distinguishably or indistinguishably nature distribution laws e.g. Maxwell-Boltzmann distribution, Bose-Einstein distribution and Fermi- Dirac distribution laws of particles and their derivation

CO4	Comprehend and articulate the connection as well as dicho	otomy between	
	classical statistical mechanics and quantum statistical mecha	anics	
Course Co	ontent		
Unit-1-Cla	assical Statistics	Lectures: 18	
Macrostat	te & Microstate, Elementary Concept of Ensemble, PhaseSpace	ce, Entropy and	
Thermody	namic Probability, Maxwell-Boltzmann Distribution Law, Par	tition Function,	
Thermody	namic Functions of an Ideal Gas, Classical Entropy Exp	ression, Gibbs	
Paradox,	Sackur Tetrode equation, Law of Equipartition of Energy	(with proof) –	
Applicatio	ns to Specific Heat and its Limitations, Thermodynamic Func	tions of a Two-	
Energy Le	evels System, Negative Temperature		
Unit-2-Th	eory of Radiation	Lectures: 18	
Properties	s of Thermal Radiation. Blackbody Radiation.Pure temperatur	e dependence.	
Kirchhoff	s law. Stefan-Boltzmann law: Thermodynamic proof. Radia	ation Pressure.	
Wien's D	Displacement law. Wien's Distribution Law. Saha's Ioniza	ation Formula.	
Rayleigh-	Jean's Law. Ultraviolet Catastrophe. Spectral Distribution of	of Black Body	
Radiation	Planck's Quantum Postulates. Planck's Law of Blackbo	ody Radiation:	
Experime	ntal Verification. Deduction of (1) Wien's Distribution Law, (2) I	Rayleigh-Jeans	
Law, (3) S	Stefan-Boltzmann Law, (4) Wien's Displacement law from Plar	nck's law.	
Unit-3-Bo	ose-Einstein Statistics	Lectures: 18	
B-E distri	bution law, Thermodynamic functions of a strongly Degener	ate Bose Gas,	
Bose Eins	stein condensation, properties of liquid He (qualitative descrip	tion), Radiation	
as a pho	ton gas and Thermodynamic functions of photon gas. Bos	e derivation of	
Planck's I	aw.	-	
Unit-4-Fe	rmi-Dirac Statistics	Lectures: 18	
Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly			
Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals,			
Relativisti	Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.		
Statistica	Physics Practical	Practicals: 72	

Statistical Physics Practical	Practicals: 72
	h
Objective: The laboratory exercises in this section have been so designed that the students learn to verify some of the concepts learnt in the theory courses. They are trained in carrying out precise measurements and handling sensitive equipment.

- To Plot Planck's law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature.
- To Plot Specific Heat of Solids for
 - Dulong-Petit law
 - Einstein distribution function
 - Debye distribution function for high temperature and low temperature and compare them for these two cases.
- Computational analysis of the behavior of a collection of particles in a box that satisfy Newtonian mechanics and interact via the Lennard-Jones potential, varying the total number of particles N and the initial conditions for Study of local number density in the equilibrium state (i) average; (ii) fluctuations
- Computational analysis of the behavior of a collection of particles in a box that satisfy Newtonian mechanics and interact via the Lennard-Jones potential, varying the total number of particles N and the initial conditions for study of transient behavior of the system (i.e. approach to equilibrium).
- Computation of the velocity distribution of particles for the system and comparison with the Maxwell velocity distribution
- Computation and study of mean molecular speed and its dependence on particle mass
- Computation of fraction of molecules in an ideal gas having speed near the most probable speed
- To Plot Maxwell-Boltzmann distribution function versus temperature.
- To Plot Bose-Einstein distribution function versus temperature.
- To Plot Fermi-Dirac distribution function versus temperature.

Text Books:

- Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill

Reference Books:

• Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.

- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press
- Elementary Statistical Physics, C. Kittel, Dover Publications, 2012

Course Title: Digital Systems and Applications

L	Т	Р	Total Credits
4	0	2	6

Course Outcomes

CO1	Understand the IC packaging and signal levels for TTL, ECL and CMOS
	technologies
CO2	Learn to synthesize the Boolean functions, simplification and construction of
	digital circuits by employing Boolean algebra
CO3	Sequential systems by choosing Flip-Flop as a building block- construct
	multivibrators, counters to provide a basic idea about memory including
	RAM, ROM and also about memory organization
CO4	Microprocessor and assembly language programming with special reference
	to Intel µP 8085

Course Contents

Unit-1-Digital Principles and Circuits	Lectures:
	18

Definition of digital signals and waveforms, digital logic, digital integrated circuits: TTL, ECL and CMOS, IC signal levels and IC packaging. Digital Circuits: Difference between Analog and Digital Circuits. Binary Numbers.Decimal to Binary and Binary to Decima Conversion. BCD, Octal and Hexadecimal numbers. Signed and unsigned binary numbers, Binary Addition. Binary Subtraction using 2's Complement. Weighted and Non-weighted Binary codes: BCD, Excess-3, Gray code, ASCII.AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates. XOR and XNOR Gates

Unit-2-Boolean algebra and Combinational Logic Circuits Lectures: 18

De Morgan's Theorems. Boolean Laws. Universal Gates, Simplification of LogicCircuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method, (2) Product of sums, and (3) Karnaugh Map. Basic idea of Multiplexers, Demultiplexers, Decoders, Encoders. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor, BCD Adder, Parity Generator and checker

IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator.

Unit-3-Sequential Logic Circuits	Lectures:
	18

SR, D, T and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip- Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JKFlip-Flop. Serialin-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel- in-Parallel-out Shift Registers (only up to 4 bits). Universal shift register, Asynchronous counters, Decade Counter. Synchronous Counter. Ring Counter. Design of Synchronous and Asynchronous sequential circuits: Model selection, state transition diagram, design equation and circuit diagram

Unit-4-Memory, 8085 Microprocessor & Assembly Language	Lectures: 18
Memory devices: RAM and ROM, memory cell, read/write cycle, PLI	Ds, CAM, CCD
memory.	

Memory Map. Main features of 8085. Block diagram. Components. Pin-out diagram. Buses. Registers. ALU. Memory. Stack memory. Timing And Control circuitry. Timing states. Instruction cycle, Memory organization & addressing. Memory Interfacing. Timing diagram of MOV and MVI. 1 byte, 2 byte & 3 byte instructions

Digital Systems and Applications Practical	Practicals: 72 h	
Objective : The laboratory exercises in this section have been so de students learn to verify some of the concepts learnt in the theory concepts learnt in the theory concepts.	esigned that the urses. They are	
trained in carrying out precise measurements and handling sensitive equipment.		
 To verify binary addition and subtraction using basic logic gates 		
 To verify the function of basic logic gates (AND, OR, NOT) To verify and design various logic gates using NAND gate (ANI) 	OR NOT and	
XOR gates)		
 To minimize a given logic circuit Half Adder, Full Adder and 4-bit binary Adder 		
To build Flip-Flop circuits using NAND gates	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
 To build a 4-bit Counter using D-type/JK Flip-Flop Ics and study To design an astable multivibrator of given specifications using 	555 Timer.	

- To design a monostable multivibrator of given specifications using 555 Time
- To Write various programs using 8085 Microprocessor

Text Books:

Authors	Title	Publisher	Year	ISBN No
A.P.Malvio, D.P.Leach and Saha	Digital Principles and Applications	Tata McGraw	7th Ed., 2011	978- 9339203405
R.S. Goankar	Microprocessor Architecture	Prentice Hall	2002	978- 8187972884

	Programming & applications with 8085			
R.J.Tocci,	Digital Systems:	PHI Learning	2001	978-
N.S.Widmer and	Principles &			0134220130
Greg Moss	Applications			
Anand Kumar,	Fundamentals of	PHI Learning	2009,	978-
2nd Edn,	Digital Circuits	Pvt. Ltd.		8120352681
G K Kharate	Digital Electronics	Oxford	2010	978-
		University		0198061830
		Press		

Course Title: Astronomy and Astrophysics

L	Т	Р	Total Credits
5	1	0	6

Course Outcomes

CO1	Ability to comprehend the tools of studying the universe, planetary systems and stars defining astronomical scales and understand the basic concept of
	positional astronomy (Astronomical Coordinate Systems)
CO2	Understand the basic properties of stars (brightness, mass, luminosity, flux
	and spectral classification) and learning of the astronomical techniques,
	various types of optical telescopes, telescope mountings and detectors.
CO3	Understanding the composition of the universe in terms of the Sun and solar
	system: photosphere, chromosphere, corona, solar activity. Solar MHD,
	helioseismology, solar system and its origin. Nebular model. I idal forces and
	planetary rings
CO4	Acquire basic knowledge about the composition of the universe in terms of
	galaxies and their classification, intrinsic stages of galaxies, galactic halo,
	Milky Way, gas and dust in galaxy, spiral arm, rotation of galaxy and dark
	matter. Star clusters in Milky Way, galactic nucleus and its properties
CO5	Learning of the large scale structure and expanding universe and learning of
	the measurement of distances, time and temperature and radius of star

Course Content

Unit-1-Introduction to Astronomy	Lectures: 26
Astronomical Distance, Mass and Time, Scales, Brightness, Radi	iant Flux and
Luminosity, Measurement of Astronomical Quantities, Astronomical Dis	tances, Stellar
Radii, Masses of Stars, Stellar Temperature, Celestial Sphere, Geomet	rv of a Sphere.

Radii, Masses of Stars, Stellar Temperature. Celestial Sphere, Geometry of a Sphere, Spherical Triangle, Astronomical Coordinate Systems, Geographical Coordinate Systems, Horizon System, Equatorial System, Diurnal Motion of the Stars, Conversion of Coordinates. Measurement of Time, Sidereal Time, Apparent Solar Time, Mean Solar Time, Equation of Time, Calendar. Basic Parameters of Stars: Determination of Distance by Parallax Method; Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scale, Distance Modulus; Determination of Temperature Radius of a star; Determination of Masses from Binary orbits; Stellar Spectral Classification, Hertzsprung-Russell Diagram. Gravitation in Astrophysics (Virial Theorem, Newton versus Einstein), Systems in Thermodynamic Equilibrium.

Unit-2-Solar System and Spectra	Lectures.
	10
Solar Parameters, Solar Photosphere, Solar Atmosphere, Chromosph	nere. Corona,
Solar Activity, Basics of Solar Magneto-hydrodynamics. Helioseisr	nology Solar
System: Facts and Figures, Origin of the Solar System: The Nebular	Model, Tidal
Forces Planetary Rings, Extra-Solar Planets. Atomic Spectra Rev	isited, Stellar
Spectra, Spectral Types & Their Temperature Dependence,	Black Body
Approximation, H R Diagram, Luminosity Classification	,
Unit-3-Galaxy and Properties	Lectures:
	20
Galaxy Morphology, Hubble's Classification of Galaxies, Elliptical (Salaxies (The
Intrinsic Shapes of Elliptical, de Vaucouleurs Law, Stars and Gas). Spira	al & Lenticular
Galaxies (Bulges, Disks, Galactic Halo) The Milky Way Galaxy, Gas a	nd Dust in the
Galaxy, Spiral Arms. Basic Structure and Properties of the Milky W	ay, Nature of
Rotation of the Milky Way (Differential Rotation of the Galaxy and C	Dort Constant,
Rotation Curve of the Galaxy and the Dark Matter, Nature of the Spira	I Arms), Stars
and Star Clusters of the Milky Way, Properties of and around the Galact	ic Nucleus.
Unit-4-Expanding Universe & Astronomical Techniques	Lectures:
	16
Cosmic Distance Ladder (An Example from Terrestrial Physics, Distance	Measurement
using Cepheid Variables), Hubble's Law (Distance- Velocity Relation), Clusters of
Galaxies (Virial theorem and Dark Matter). Basic Optical Definitions f	or Astronomy
(Magnification Light Gathering Power, Resolving Power and Diff	raction Limit,
Atmospheric Windows), Optical Telescopes (Types of Reflecting	Telescopes,
Telescope Mountings, Space Telescopes, Detectors and Their Use wit	h Telescopes
(Types of Detectors, detection Limits with Telescopes	•
Text/Reference Books	

Authors	Title	Publisher	Ed/year	ISBN No

M. Zeilik and S.A. Gregory	Introductory Astronomy and Astrophysics	Saunders College Publishing.		
H. Karttunen et al. Springer	Fundamental of Astronomy (Fourth Edition)	Springer		
Baidyanath Basu	An introduction to Astrophysics	Prentice Hall of India Pvt. Ltd.	2001	
Arny and Stephen Schneider	Explorations: Introduction to Astronomy	McGraw Hill	2014	
B.W. Carroll & D.A. Ostlie	Modern Astrophysics	Addison- Wesley Publishing Co		

Course Title: Nano Materials and Applications

L	Т	Р	Total Credits
4	0	2	6

Course Outcomes

CO1	Become familiar to Nano systems, learning of quantum confiner to volume effect and introduction to different Nanostructures in and 3D	nent, surface n 0D, 1D, 2D				
CO2	Learning of the methods of synthesis of Nano Materials such a and Top-down approaches and other instrumentation used in well as in characterization processes	as Bottom-up synthesis as				
CO3	Understand the optical properties of nanostructured materials, of band gap, excitonic confinement and different transport mech	modification nanisms				
CO4	Applications of nanostructured materials in making devices na NEMS and other heterostructures for solar cell and LEDs	mely MEMS,				
Course C	ontent					
Unit-1-N	anoscale Structure	Lectures: 16				
Schrodin confinem Unit-2-S	Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.					
20 Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots. X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy.						
Unit-3-P	roperties	Lectures: 18				
Coulomb nanostru	 interaction in nanostructures. Concept of dielectric of ctures and charging of nanostructure.Quasi-particles and exciton 	constant for				

absorption, emission and luminescence. Optical properties of heterostrctures and nanostructures. Carrier transport in nanostructures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects.

Unit-4-Applications

Lectures: 18

Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching & optical data storage. Magnetic quantum well, magnetic dots-magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).

Nano Materials and Applications Practical	72 h
 Synthesis of metal nanoparticles by chemical route. 	
 Synthesis of semiconductor nanoparticles. 	
 Surface Plasmon study of metal nanoparticles by L photometer. 	JV-Visible spectro-
XRD pattern of nanomaterials and estimation of particle size	Э.
 To study the effect of size on color of nanomaterials. 	
 To prepare composite of CNTs with other materials. 	
 Growth of quantum dots by thermal evaporation. 	
 Prepare a disc of ceramic of a compound using ball mi sintering, and study its XRD. 	illing, pressing and
 Fabricate a thin film of nanoparticles by spin coating (or or study transmittance spectra in UV-Visible region. 	chemical route) and
 Prepare a thin film capacitor-measure capacitance as a function or frequency. 	ction of temperature
 Fabricate a PN diode by diffusing AI over the N-type Si 	i and studv its V-I

Fabricate a PN diode by diffusing AI over the N-type Si and study its V-I characteristic.

Text/ Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
C.P. Poole, Jr. Frank J. Owens	Introduction to Nanotechnology	Wiley India Pvt. Ltd	2003	978- 0471079354
S.K. Kulkarni	Nanotechnology: Principles & Practices	Capital Publishing Company	2014	978- 3319091709
K.K. Chattopadhyay and A. N. Banerjee	Introduction to Nanoscience and Technology	PHI Learning Private Limited	2009	978- 8120336087
V.V. Mitin, V.A. Kochelap and M.A. Stroscio	Introduction to Nanoelectronics	Cambridge University Press.	2009	978- 0521166843
Richard Booker, Earl Boysen	Nanotechnology: The Fun and Easy Way to Explore the science of Matter's Smallest Particles	John Wiley and Sons	2005	978- 8126506255

Course Title: Medical-Physics

4	0	2	6
---	---	---	---

Course Outcomes

CO1	Become familiar of the concepts of physics applicable in clinical medicine or in particular expertise in medical applications
CO2	Learn about human anatomy, physiology and iophysics, exploring its performance as a physical machine and understanding of the senses
CO3	Understanding about the radiation physics, its kind and various instrumentation in diagnostic tools, imaging techniques, matter interaction, detection and safety practices
CO4	Imparts functional knowledge regarding need for radiological protection and the sources of an approximate level of radiation exposure for treatment purposes

Course Content

Unit-1-Physics of the Human Body	Lectures: 18
Desig Anotomical Terminalany Standard Anotomical Desition Dla	

Basic Anatomical Terminology: Standard Anatomical Position, Planes. Familiarity with terms like- Superior, Inferior, Anterior, Posterior, Medial, Lateral, Proximal and Distal. Skeleton, forces, and body stability. Muscles and dynamics of body movement. Physics of Locomotors Systems: joints and movements, Stability and Equilibrium. Energy balance in the body, Energy consumption of the body, Heat losses of the body, Thermal Regulation. Physics of breathing, Physics of cardiovascular system. Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. Optical system of the body: Physics of the eye. Physics of the nervous system, Electrical signals and information transfer.

Unit-2-Ra	diatior	n Physics						L 1	ectures: 8
Radiation	units	exposure,	absorbed	dose,	units:	rad,	gray,	relative	biological

effectiveness, effective dose- Rem & Sievert, inverse square law. Interaction of radiation with matter Compton & photoelectric effect, linear attenuation coefficient. Radiation Detectors: ionization (Thimble chamber, condenser chamber), chamber. Geiger Muller counter, Scintillation counters and Solid State detectors, TFT. Electromagnetic spectrum, production of x-rays, x-ray spectra, Brehmsstrahlung, Characteristic x-ray. X-ray tubes and types: Coolidge tube, x-ray tube design, tube cooling stationary mode, Rotating anode x-ray tube, Tube rating, quality and intensity of x-ray. X-ray generator circuits, half wave and full wave rectification, filament circuit, kilo voltage circuit. Single and three phase electric supply. Power ratings. Types of X-Ray Generator, high frequency generator, exposure timers and switches, HT cables.

Unit-3-Radiation Oncology Physics

Lectures: 18

External Beam Therapy (Basic Idea): Telecobalt, Conformal Radiation Therapy (CRT), 3DCRT, IMRT, Image Guided Radiotherapy, EPID, Rapid Arc, Proton Therapy, Gamma Knife, Cyber Knife. Contact Beam Therapy (Basic Idea): Brachytherapy- LDR and HDR, Intra Operative Brachytherapy. Radiotherapy, kilo voltage machines, deep therapy machines, Telecobalt machines, Medical linear accelerator. Basics of Teletherapy units, deep X-ray, Telecobalt units, Radiation protection, external beam characteristics, dose maximum and build up – bolus, percentage depth dose, tissue maximum ratio and tissue phantom ratio, Planned target Volume and Gross Tumour Volume. Evolution of Medical Imaging, X-ray diagnostics and imaging, Physics of nuclear magnetic resonance (NMR), NMR imaging, MRI Radiological imaging, Ultrasound imaging, Physics of Doppler with applications and modes, Vascular Doppler. Radiography: Filters, grids, cassette, X-ray film, film processing, fluoroscopy. Computed tomography scanner- principle and function, display, generations, mammography. Thyroid uptake system and Gamma camera (Only Principle, function and display)

Unit-4-Radiation Protection

Lectures: 18

Principles of radiation protection, protective materials-radiation effects, somatic, genetic stochastic and deterministic effect. Personal monitoring devices: TLD film badge, pocket dosimeter, OSL dosimeter. Radiation dosimeter. Natural radioactivity, Biological effects of radiation, Radiation monitors. Steps to reduce radiation to Patient,

Staff and Public. Dose Limits for Occupational workers and Public. AERB: Existence & Purpose. Diagnostic nuclear medicine: Radiopharmaceuticals for radioisotope imaging, Radioisotope imaging equipment, Single photon and positron emission tomography. Therapeutic nuclear medicine: Interaction between radiation and matter Dose and isodose in radiation treatment. Medical Instrumentation: Basic Ideas of Endoscope and Cautery, Sleep Apnea Cpap Machines, Ventilator and its modes.

Medical Physics	72 h
 Understanding the working of a manual Hg Blood Pres 	ssure monitor,
Stethoscope and to measure the Blood Pressure.	
 Understanding the working of a manual optical eye-testing n 	nachine and to
learn eye-testing procedure.	
Correction of Myopia (short sightedness) using a combination of the second	of lenses on an
optical bench/breadboard.	
Correction of Hypermetropia/Hyperopia (long sightedne	ess) using a
combination of lenses on an optical bench/breadboard.	, 0
 To learn working of Thermoluminescent dosimeter (TLD) badge 	es and measure
the background radiation.	
 Familiarization with Geiger-Muller (GM) Counter & to measure 	ire background
radiation	5

- Familiarization with Radiation meter and to measure background radiation.
- Familiarization with the Use of a Vascular Doppler.

Text Books

- Christensen's Physics of Diagnostic Radiology: Curry, Dowdey and Murry Lippincot Williams and Wilkins (1990)
- Physics of the human body, Irving P. Herman, Springer (2007).
- Physics of Radiation Therapy: F M Khan Williams and Wilkins, 3 rd edition (2003)

Reference Books

- Medical Physics, J.R. Cameron and J.G.Skofronick, Wiley (1978)
- Basic Radiological Physics Dr. K. Thayalan- Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi (2003)
- The essential physics of Medical Imaging: Bushberg, Seibert, Leidholdt and Boone Lippincot Williams and Wilkins, Second Edition (2002)

Semester VII

Course Title: Classical Mechanics

L	Т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Learning the knowledge of Newtonian physics from a single particle to a system of particles, generalized coordinates and D'Alembert's Principle and the Lagrangian formulations of classical mechanics, applications in appropriate physical problems
CO2	Learn about the Hamilton's Principle, variational principle, cyclic coordinates
	and Hamilton's equations
CO3	Understand the Canonical variables. Legendre transformation, Poisson and
	Lagrange brackets and their properties.
CO4	Learning of rigid body dynamics and small oscillations based normal
	modes and frequencies for different examples
Course C	ontent

Unit-1-Lagrangian Formulation	Lectures: 20	
Mechanics of a system of particles; constraints of motion, generalize	d coordinates,	
D'Alembert's Principle and Lagrange's velocity - dependent forces and	the dissipation	
function, Applications of Lagrangian formulation		
Unit-2- Hamilton's Principles & Equations Lectures: 16		
Calculus of variations, Hamilton's principle, Lagrange's equation from	om Hamilton's	
principle, extension to nonholonomic systems, advantages of variat	ional principle	

formulation, symmetry properties of space and time and conservation	tion theorems.
Legendre Transformation, Hamilton's equations of motion, Cycli	c-co-ordinates,
Hamilton's equations from variational principle, Principle of least action	
Unit-3- Canonical Transformation:	Lectures: 20
Canonical transformation and its examples, Poisson's brackets, Equation	ions of motion,
Angular momentum, Poisson's Bracket relations, infinitesimal canonical	transformation,
Conservation Theorems. Hamilton-Jacobi equations for principal and	characteristic
functions, Harmonic oscillator problem, Action-angle variables for syst	tems with one-
degree of freedom.	
Unit-4- Rigid Body Dynamics and Small Oscillation	Lectures: 16
Independent co-ordinates of rigid body, orthogonal transformations, E	ulerian Angles
and Euler's theorem, infinitesimal rotation, Rate of change of a vector,	Coriolis force,
angular momentum and kinetic energy of a rigid body, the inertia tensor	r, principal axis
transformation, Euler equations of motion, Torque free motion of rigid b	body, motion of
a symmetrical top. Eigen value equation, Free vibrations, Norma	I Coordinates,
Vibrations of a triatomic molecule.	

Text/Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
H. Goldstein	Classical Mechanics	Pearson Education	2014	9781292038933
G.R. Fowles and G.L. Cassiday	Analytical Mechanics,	Cengage Learnings	2004	9788131501115

L.D. Landau	Mechanics	Pergamon	1976	0750628960
and E.M. Lifshitz				
N. C. Rana and	Classical Mechanics	McGraw-Hill,	1991	9780074603154
P. S. Jaog				

Course Title: PHY601 (Quantum Mechanics)

L	Т	Р	Total Credits
4	0	0	4

Course Contents/syllabus:

	Time(h)
Unit-I-Linear Vector Space	16
Linear vector spaces, Inner product, norm, Schwarz inequality, linear operators, eigenvalue and eigenvector, adjoint of a linear operator, Hermitian or self-adjoint operators and their properties, unitary operators, ortho-normal basis –discrete and continuous. Dirac's bra and ket notation, commutators, Simultaneous eigenvectors	
Unit-II-Matrix Mechanics & Angular Momentum	20

Postulates of quantum mechanics, uncertainty relation. Harmonic oscillator	
in matrix mechanics, Time development of states and operators,	
Heisenberg and Schroedinger representations, Exchange operator and	
identical particles. Density Matrix and Mixed Ensemble. Commutation	
relations of angular momentum operators. Eigenvalues, eigenvectors.	
Ladder operators and their matrix representations. Orbital angular	
momentum operator, Spin angular momentum and Pauli matrices. General	
angular momentum & its representation. Clebsch-Gordan coefficients.	
Wigner - Eckart theorem	
Unit III: Perturbation and Scattering Theory	20
Non-Degenerate and degenerate perturbation theory and its applications,	
Variational method with applications to the ground states of harmonic	
oscillator and other sample systems. General expression for the probability	
of transition from one state to another, constant and harmonic	
perturbations, Fermi's golden rule and its application to radiative transition	
in atoms, Selection rules for emission and absorption of light. Cross-	
section and scattering amplitude, partial wave analysis, Low energy	
scattering, Green's functions in scattering theory, Born approximation and	
its application to Yukawa potential and other simple potentials. Optical	
theorem, Scattering of identical particles.	
Unit IV: Introduction to Relativistic Quantum Mechanics	16
Quantum mechanics of many particle systems. The need for QFT	
(relativity, many-body and interactions), Klein-Gordon equation, Dirac	
equation and its plane wave solutions, significance of negative energy	
solutions, spin angular momentum of the Dirac particle.	

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
P.M. Mathews K. Venkatesan	A Text book of Quantum Mechanics: 2nd edition	Tata McGraw Hill, New Delhi	2004	978- 0070146174

J.L. Powell an B. Crasemann	Quantum Mechanics	Narosa, New Delhi	1995	978- 0201059205
J.J. Sakurai	Modern Quantum Mechanics	Addison Wesley	2004	978- 0201539295
E. Merzbacher	Quantum Mechanics	John Wiley, Singapore	2004	978- 0471887027
M.P. Khanna	Quantum Mechanics	Har Anand, New Delhi	2006	978- 8124113684
R. Shankar	Principles of Quantum Mechanics: 3rd Ed.	Springer	2008	978- 1475705768

Course Title: Statistical Physics

L	Т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Ability to understand fundamentals of thermodynamics and revision of laws of thermodynamics
CO2	Knowledge of statistical ensemble, probability distributions, partition function and classification of ensemble theory on the basis of thermodynamic quantities
CO3	Implementation of quantum concepts on Statistical mechanics.
CO4	Understanding of phase transition concepts/rules and their implementation to describe spin interactions and Ising model

CO5 Learning of Brownian motion and random walk problems.

Course Contents

Unit-1- Review of Thermodynamics	Lectures:		
Laws of thermodynamics, macroscopic and microscopic states, cor statistics and thermodynamics, classical ideal gas, Gibbs paradox and it	ntact between s solution.		
Unit-2- Classical Ensemble Theory	Lectures: 24		
Phase space and Liouville's theorem, the microcanonical ensemble that application to ideal gas of monatomic particles, Boltzmann relation for canonical ensemble and its thermodynamics, partition function, classical canonical ensemble theory, energy fluctuations, equipartition and virial system of quantum harmonic oscillators as canonical ensemble, paramagnetism; The grand canonical ensemble and significance quantities, classical ideal gas in grand canonical ensemble theory.	heory and its entropy, The al ideal gas in l theorems, a statistics of of statistical		
Unit-3- Quantum Statistical Mechanics	Lectures: 18		
Indistinguishable particles in quantum mechanics. Bosons and Fermions. Bose- Einstein statistics, ideal Bose gas, photons, Bose-Einstein condensation. BoseEinstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field), Fermi-Dirac statistics, Fermi energy, ideal Fermi gas. discussion of heat			
Unit-4- Phase Transitions and Fluctuations	Lectures: 18		
First- and second-order phase transitions, Interacting spin systems. The Exact solution of Ising model in 1-dimension, mean-field solution in higher Diamagnetic, Paramagnetic and ferromagnetic phases. Thermodynamic random walk and Brownian motion, introduction to nonequilibrium process.	e Ising model. er dimensions. c fluctuations, sses, diffusion		

Text/Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
C. Kittel	Elementary Statistical Physics	Dover Publications	2004	978- 0486435145
R.K. Pathria	Statistical Mechanics	Elsevier	2021	9351073971
F. Reif,	Statistical Physics	Tata McGraw- Hill	2008	978- 0070048621
K. Huang	Statistical Mechanics	Wiley	2023	9354247736

Course Title: PHY603 (Electronics)

L	Т	Р	Total Credits
4	0	0	4

Course Contents/syllabus:

	Time (h)
Unit I: Circuit Analysis	16
Thevenin and Norton theorems, Mesh and Node analysis. Admittance,	
impedance, scattering and hybrid matrices for two and three port networks and	
their cascade & parallel combinations. Laplace Transforms.	
Unit II: Physics of Semiconductor Devices	20

Energy band diagrams, Direct and indirect semiconductors, Metal- semiconductor junctions, Semiconductor junctions p-n junction, Zener diode, Schottky diode, switching diodes, Tunnel diode, LEDs, Solar cell, Photoconductors, Photodiodes, Semiconductor laser, JFET and MOSFET, Liquid crystal displays, UJT, Gunn diode, IMPATT devices, pn devices and applications	
Unit III: Analog Circuits and its Applications	18
Differential amplifiers, common mode rejection ratio, Transfer characteristics, OPAMP configurations, open loop and close loop gain, inverting, non-inverting and differential amplifier, Basic characteristics with detailed internal circuit of IC Opamp, slew rate, Comparators with hysteresis, Window comparator, wave generators, Summing amplifier, Analogue computation, Logarithmic and antilogarithmic amplifiers. Current-to-voltage and Voltage-to-current converter, Voltage regulation circuits, Precision rectifiers, Instrumentation amplifiers, True RMS voltage measurements. 555 timer based circuits.	
Unit IV: Oscillators and Filter	18
Phase shift oscillator, Wien-bridge oscillator, Sample and hold circuits, Phase Locking Loop basics and applications. Lock-in-detector, box-car integrator. Sallen and Key configuration and Multifeedback configuration, Low Pass, High Pass, Band Pass and Band Reject active filters, Delay equalizers.	

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
W.D. Stanley	Network Analysis with Applications	Pearson	2003	978- 0130602466
Chua, Desoer and Kuh	Linear and Non-linear Circuits	Tata McGraw	1987	978- 9339220686
S.M. Sze	Semiconductor Devices - Physics and Technology	John Wiley	2002	978- 8126556755

J. Millman C. C. Halkias and S. Jit	Electronic Devices and Circuits, 4th Ed.	McGraw-Hill	2015	978- 9339219543
Boylested and Nashelsky	Electronic Devices and Circuits Theory, 10th ed	Pearson Education,	2009	978- 9332542600
Ben Streetman, Sanjay Banerjee	Solid State Electronic Devices: 6th Edition	Prentice Hall India	2005	978- 0131497269

Course Title: PHY604 (Physics Labortary)

L	Т	Р	Total Credits
0	0	4	4

Lab/ Practical details:

List of Experiments -with basic instructions

- To study the characteristics of a regulated power supply and voltage multiplier circuits.
- To study the characteristics of a PN junction with varying temperature & the capacitance of the junction.
- To study the characteristics of a LED and determine activation energy.
- To study the frequency response of an operational amplifier & to use operational amplifier for different mathematical operations
- To study the power dissipation in the SSB and DSB side bands of AM wave. To study the demodulation of AM wave.
- To study various aspects of frequency modulation and demodulation.
- To study Hartley and Wien-Bridge oscillators.

- FET/MOSFET characteristics, biasing and its applications as an amplifier..
- UJT characteristics and its application as relaxation oscillator or triggering of triac.
- To study logic gates and flip flop circuits using on a bread-board.
- To design (i) Low pass filter (ii) High pass filter (iii) All-pass filter (iv) Band pass filter (v) Band-reject passive filter.
- Use of timer IC 555 in astable & monostable modes and applications involving relays, LDR.
- To design a rectangular/triangular waveform generator using Comparators and IC8038.
- Hybrid parameters of a transistor and design an amplifier. Determination of k/e ratio.
- To determine Planck's constant using photocell.
- To determine the electric charge of an electron using Millikan drop experiment

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Flint, B L and Worsnop, H T	Advanced practical physics for students	Asia Publishing	1971	978- 0423738902
J. Millman & C. C. Halkias	Electronic Devices and Circuits	McGraw-Hill	4th Ed., 2015	9780137246830

Course Title: (Numerical Methods and Analysis)

L	Т	Р	Total Credits
2	0	2	4

Course Contents/syllabus:

	Time(h)
Unit I: Introduction	9
Introduction to computational physics, Need of computational physics,	

Computer hardware, basic computer architecture, hierarchical memory, cache, latency and bandwidth, Moores law, power bottleneck, Software: compiled (Fortran, C) vs. interpreted languages (MATLAB, python);	
software management	
Unit II: Errors and Precision	9
Error analysis for round-off and truncation errors. Elements of Numerical Integration, Error estimates of Trapezoidal rule, Simpson midpoint and 3/8 rules, Integer representation; floating-point representation, Machine precision, error calculation	
Unit III: Interpolation	9
Composite Numerical Integration. Gaussian Quadrature using interpolating polynomials, special polynomials like Legendre polynomials, Multidimensional integrals - Two and three dimensional integration. Interpolation – Introduction, Polynomial interpolation; Lagrange Interpolation polynomial; Cubic Spline Interpolation, Neville's algorithm	
Unit IV: Data Analysis	9
Modeling of Data, Maximum Likelihood Estimator; Pearson chi square; Least Squares method – both without and with errors in dependent variable; Parameter estimations and errors: General Linear Least square	

-		
Tovt	/ Doforonc	NA RAAker
IUXL	/ Releient	E DUURS.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
S. Sastry	Introductory Methods of Numerical Analysis	PHI Learning Pvt. Ltd.	5th edition, 2012	9788120345928
R.C. Verma	Computational Physics: An Introduction	New Age International	1st ed., 2005	9788122416596
Atkinson, K E	Elementary Numerical analysis	Wiley India	3rd edition, 2003	9780471433378

Humming, R W	Numerical methods for scientists and engineers	Dover Publications	2nd edition, 1987	9780486652412
Walker, Darren	Computational Physics	Mercury Learning and Information	Revised edition, 2016	9781942270737

|--|

Objectives: The major objective of this course is intended to be an Introduction to a programming Language (C/C++) as well as application for general mathematical problems.

- Introduction to Linux and Computer Programming Language (C/C++)
- Introduction to Graphics (Gnuplot etc.)s.
- Data and Statements : Data Types. Constants and Variables. Mathematical, Relational, Logical and Bitwise Operators. Expressions and Statements. Block, Local and Global variables. Auto, Static and External Variables
- I/O Statements : printf, scanf, getc, getch, getchar, getche, etc. Streams: cin and cout.
- Control Statements : If-statement. If-else Statement. Nested if Structure. Else-if Statement
- Unconditional and Conditional Looping. While Loop. Do-while Loop. For Loop. Break and Continue Statements.
- Loops.
- Arrays and Structures : One and Two Dimensional Arrays. Idea of Structures.
- Functions and Classes: Standard Library Functions, User-defined Functions. Void Functions and Functions returning Values,
- Classes, Objects, Idea of Strings and Pointer
- C++ program of matrix multiplication.
- C++ Programs on Random number generation and tests of randomness.
- C++ program to find reverse of number by defining functions outside class.

- C++ Program to calculate Volume of Cube using constructor and destructor.
- C++ program for various Mathematical Operations using Switch case.
- C++ Programs on Measurement of central moment, correlation coefficients using classes.
- C++ Programs on Least squares fitting for linear and general equations.
- C++ Programs on Numerical Differentiation
- C++ Programs on Interpolation Lagrange interpolating polynomial Lagrange interpolation.
- C++ Programs on Cubic spline interpolation.
- C++ Programs on Root Finding (Bisection, Secant and Newton-Raphson Methods)

_Semester-VIII

Course Title: Advanced Mathematical Methods

L	Т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Acquire knowledge of methods to solve partial different specifically variable separation method with the example partial differential equations in Physics	ntial equations s of important			
CO2	CO2 Learn the Fourier analysis of periodic functions and their applications in physical problems, understand the Fourier, Laplace transform and their applications				
CO3	Learn about the special functions Bessel, Legendre, H Laguerre, their differential equations and their applications physical problems	ermite and s in various			
CO4	Learn about the properties of complex functions such as ana evaluating integrals using Cauchy's Integral formula and se and Laurent) expansion	alyticity, and ries (Taylor			
Course Co	ontent				
Unit-1-Int	egral Transformations	Lectures: 22			
Fourier se Advantag the Fourie represent Laplace ti	Fourier series, Dirichlet conditions. General properties. Convolution and correlation, Advantages and applications, Gibbs phenomenon. Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation.				
Unit-2- C	Unit-2- Complex Variables Lectures: 14				
Cauchy-Riemann conditions, analyticity, Cauchy-Goursat theorem, Cauchy's Integral formula, branch points and branch cuts, multivalued functions, Taylor and Laurent expansion, singularities and convergence, calculus of residues, evaluation of definite integrals, Dispersion relation.					
Unit-3- Group Theory Lectures: 20					
Multiplicat classes, c Homomon represent represent groups, r SO(3,1)	tion table, conjugate elements and classes, Abstract group cosets, factor groups, normal subgroups, direct product of group rphism & isomorphism. Representations: reducible and irrect ations, Schur's lemma and orthogonality theorems, ation, direct product of representations. Introduction to continue otation and unitary groups. Representation of SO(3), SU(bs: subgroups, ups; Examples, ducible, unitary characters of ous groups: Lie 2), SU(3) and			
Unit-4- TI	neory of Probability and Statistics	Lectures: 16			

Introduction to probability theory, Random Variables, Binomial, Poisson and Normal Distributions. Central Limit Theorem, Hypothesis Testing and Data Analysis in Statistics

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
G.B. Arfken	Mathematical Methods for Physicists	Elsevier	2012	9381269556
George F. Simmons,	Differential Equations	McGraw Hill.	2007	978- 8173193293
A.S.Fokas & M.J.Ablowitz	Complex Variables	Cambridge Univ. Press	2011	978- 0521534291
K.F Riley, M.P. Hobson and S. J. Bence	Mathematical Methods for Physics and Engineers	Cambridge University Press	2006	978- 0521890670

Course Title: PHY602 (Classical Electrodynamics)

L	Т	Р	Total Credits
4	0	0	4

Course Contents/syllabus:

	Time (h)
Unit I: Electrostatics & Boundary Value Problems	18
Gauss's law, Poisson and Laplace equation, Green's theorem, Dirichlet and Neuman boundary conditions, Formal solution of electrostatic boundary value problems with Green function, Electrostatic potential energy and energy density. Method of Images, Point Charge in the Presence of a Grounded Conducting Sphere, Point Charge in the Presence of a Charged, Insulated, Conducting Sphere, Point Charge Near a Conducting Sphere at Fixed Potential, Conducting Sphere in a Uniform Electric Field by Method of Images, Green Function for the Sphere; General Solution for the Potential , Conducting Sphere with Hemispheres at Different Potentials, Separation of Variables; Laplace Equation in Rectangular coordinates, Laplace Equation in Spherical Coordinates, Legendre Equation and Legendre Polynomials, Boundary-Value Problems with Azimuthal Symmetry. Multipole Expansion, Multipole Expansion of the Energy of a Charge Distribution in an External Field, Elementary Treatment of Electrostatics with Ponderable Media, Boundary-Value Problems with Dielectrics, Electrostatic energy in dielectric media	
Unit II: Magnetostatics	18
Biot and Savart Law, Ampere's Law, Vector potential, Magnetic Fields of a Localized Current Distribution, Magnetic Moment, Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction, Singularity in dipole field, Fermi-contact term, Macroscopic Equations, Boundary Conditions on B and H, Methods of Solving Boundary-Value Problems in Magnetostatics, Uniformly Magnetized Sphere, Magnetized Sphere in an External Field; Permanent Magnets, Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field.	
Unit III: Maxwell's Equations & waveguides	18
Maxwell's Displacement Current; Maxwell Equations, Vector and Scalar Potentials, Gauge Transformations, Lorenz Gauge, Coulomb Gauge, Hertz potential. Cylindrical Cavities and Waveguides, Waveguides, Modes in a	

Rectangular Waveguide, Energy Flow and Attenuation in Waveguides,	
Coaxial cable, Resonant Cavities, Power Losses in a Cavity; Q of a Cavity,	
Earth and Ionosphere as a Resonant Cavity: Schumann Resonances,	
Multimode Propagation in Optical Fibers, Modes in Dielectric Waveguides.	

Unit IV: Electromagnetic Waves18Green Functions for the Wave Equation, plane waves in free space and
isotropic dielectrics, waves in conducting media, skin depth, Plane waves in
a non conducting medium, Reflection and Refraction of Electromagnetic
Waves at a Plane Interface Between two Dielectrics, Fresnel's amplitude
relations, Reflection and Transmission coefficients, polarization by reflection,
Brewster's angle, Total internal reflection, Stoke's parameters, Waves in
rarefied plasma (ionosphere) and cold magneto-plasma, Frequency
Dispersion Characteristics of Dielectrics, Conductors, and Plasmas,
Simplified Model of Propagation in the Ionosphere and Magnetosphere.
Fields at the Surface of and within a Conductor,18

Text / Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
D.J. Griffiths	Introduction to Electrodynamics, 4th ed.	Prentice Hall India, New Delhi	2012	978- 1108822909
A.Z. Capri and P.V. Panat	Introduction to Electrodynamics	Narosa Publishing House	2010	978- 8173193293
L. D. Landau E. M. Lifshitz L. P. Pitaevskii	Electrodynamics of Continuous Media	Oxford	2005	978- 8181477934
John David Jackson	Classical Electrodynamics,3rd Ed	Wiley	1998	978- 0471309321

S. P. Puri	Classical Electrodynamics	Narosa	2011	978- 8184875843

Course Title: Research Methodology

L	Т	Р	Total Credits
4	0	0	4

Course Outcomes

CO1	Ability to understand the basic characteristics of research and importance of
	various techniques while performing research.
CO2	Understand the types of data and measurement methods.
CO3	To develop numerical methods aided by technology to solve algebraic equations, calculate derivatives and integrals, curve fitting and optimization techniques
CO4	Understanding the role of hypothesis formulation in research.

Course Content

Unit I: Introduction	Lectures: 18
Research meaning and significance, Characteristics of scientific Reserves research: pure, applied, analytical, exploratory, descriptive, surveys Conceptual or theoretical models Research process Limitations of Sciences and Role of computer technology in research.	earch Type of s, Case-study Social science
Unit II: Data: Types and Measurement	Lectures: 18

Data information and statistics Data types Qualitative and Quantitative; Cross and Time series Scales of measurement :nominal, ordinal, interval, ratio Sources of data: Primary and secondary Census and sample survey-criterion of good sample, choice of sample, probability and non-probability sampling methods, sampling and non-sampling errors.

Unit III: Numerical Techniques in Defence Research	Lectures:	
-	18	

Introduction to defence related numerical data, solution of non-linear equations, solution of linear systems. Introduction and polynomial approximation, curve fitting, Numerical applications & integrations, numerical optimization. Matrices and types of linear systems, direct elimination methods, conditioning and stability of solutions, Simulation for Computer Graphics, Modelling techniques.

Unit IV: Hypothesis: Nature and Role in Research	Lectures: 18
Definition of a Hypothesis Role of Hypothesis Types of Hypothesis Cr	iteria of Good
Hypothesis Null and Alternative Hypothesis, parameter and statistic, Ty	pe- I and type
ii errors, Level of significance, Critical region	

Text/Reference Books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Kothari R.C	Research Methodology, Methods and Techniques.	New Age International Publishers	2008	9389802555
O.R.Krishnaswamy, House, 1993	Methodology of Research In Social Sciences	Himalya publishing	1993	9350975696

P.V. Young	Scientific Social Survey and Research,	Prentice Hall of India Ltd,	1984	8120300858
S.S. Sastry.	Introductory Methods of Numerical Analysis	Prentice Hall India Learning Private Limited Pvt. Ltd	2009	9788120345928

Course Title: Computational Physics

L	Т	Р	Total Credits
2	0	2	4

Course Outcomes

CO1	Review of C++ programming including arrays, pointers and functions
CO2	Learning of various methods to find the roots of equations
CO3	Understanding of Gauss elimination methods to solve linear algebraic equations
CO4	Understanding the differential equation to solve complex physics equations like heat equation and wave equation

Course Content

Unit-1-Review of C++ Programming	Lectures: 9

Data types, C programming syntax for Input/Output, Control statements: if, if-else and		
nested-if statements. Looping: while, for do while loops, Functions: Call by values		
and by references, Arrays and structures: one dimensional two-dimension	onal arrays,	
Pointers, Idea of string and structures		
Unit-2-Roots of Equations	Lectures:9	
Real roots of single variable function; iterative approach; qualitative be	ehavior of the	
function; Closed domain methods (bracketing): Bisection; False position	method; Open	
domain methods: Newton-Raphson, Secant method; Muller's method; C	Complications;	
Roots of polynomials; Roots of non-linear equations.		
Unit 2 Linear Algebraia Equations		
Unit-3-Linear Algebraic Equations	Lectures: 9	
Introduction, Augmented Matrix, Gaussian Elimination with Backward	d substitution,	
Introduction, Augmented Matrix, Gaussian Elimination with Backward Pivoting strategies – partial and complete, Gauss Jordan Elimina	d substitution, ation Method,	
Introduction, Augmented Matrix, Gaussian Elimination with Backward Pivoting strategies – partial and complete, Gauss Jordan Elimina Operation Counts, Tridiagonal Systems of Linear Equations, Inverse of	d substitution, ation Method, f a matrix, LU	
Introduction, Augmented Matrix, Gaussian Elimination with Backward Pivoting strategies – partial and complete, Gauss Jordan Elimina Operation Counts, Tridiagonal Systems of Linear Equations, Inverse of Decomposition	Lectures: 9 d substitution, ation Method, f a matrix, LU	
Introduction, Augmented Matrix, Gaussian Elimination with Backward Pivoting strategies – partial and complete, Gauss Jordan Elimina Operation Counts, Tridiagonal Systems of Linear Equations, Inverse of Decomposition Unit-4- Differential Equations	Lectures: 9 d substitution, ation Method, f a matrix, LU Lectures: 9	
Introduction, Augmented Matrix, Gaussian Elimination with Backward Pivoting strategies – partial and complete, Gauss Jordan Elimina Operation Counts, Tridiagonal Systems of Linear Equations, Inverse of Decomposition Unit-4- Differential Equations Numerical Differentiation, Partial differential equations – elliptic equation	Lectures: 9 d substitution, ation Method, f a matrix, LU Lectures: 9 ons; boundary	
Introduction, Augmented Matrix, Gaussian Elimination with Backward Pivoting strategies – partial and complete, Gauss Jordan Elimina Operation Counts, Tridiagonal Systems of Linear Equations, Inverse of Decomposition Unit-4- Differential Equations Numerical Differentiation, Partial differential equations – elliptic equation conditions; Finite Difference method; Forward and Backward difference r	Lectures: 9 d substitution, ation Method, f a matrix, LU Lectures: 9 ons; boundary methods, Few	

Con	nputational Programming Laboratory				
æ	Objectives: The major objective of this course is intended to be Introduction to a programming Language (C/C++) as well as app general mathematical problems.	an Dication for			
	• C++ Programs on Cubic spline interpolation.				
	 C++ Programs on Root Finding (Bisection, Secant and Ne Raphson Methods) 	ewton-			
	 C++ Programs to solve First & Second Order differential I including Simultaneous Equations (Euler & Runge Kutta) 	Equations			
	 C++ Programs on Numerical Integration (Trapezoidal, Sir Quadrature methods). 	npson and			
	C++ Programs on Numerical Differentiation				
	 C++ Programs on Solution of algebraic equations using G elimination with back substitution. 	Gauss			
	 C++ Programs on Implementing random walk problem in dimensions. 	1-, 2- and 3-			
	 To study graphically the motion of falling spherical body u effects of medium using Euler method i.e. viscous drag, b air drag. 	inder various buoyancy and			
	 To study graphically the EM oscillations in a LCR circuit u Kutta Method 	ising Runge-			
	• To study the motion of an artificial satellite.				
		Publisher	Vear of	ISBN	
---	--	------------------------------------	---------------------------------------	---------------------------	----------------------
	Radioactivity.				
•	Use Monte Carlo techniqu	es to simulate p	henomenon of	Nuclear	
•	To study convection in fluid	ds using Lorenz	system		
•	To study graphically the pausing FN method.	ath of a projectil	e with and with	out air drag	
•	To study the motion of 1-I damping effects).	D harmonic osci	llator (without a	nd with	
•	To study phase trajectory	of a Chaotic Pe	ndulum.		
•	To study the motion of a cl (b) Uniform Magnetic field, magnetic fields.	harged particle (c) in combined	in: (a) Uniform e d uniform electr	electric field, ic and	
•	Runge-Kutta method	ivalues of a qua	antum oscillator	using the	Text/Reference Books

AUTHOR	TITLE	Publisher	Year of publication	ISBN
Nicholas J. Giordano and Hisao Nakanishi	Computational Physics	Prentice Hall,India	2005	0131469908
R.C. Verma	Computational Physics: An Introduction	New Age International Publishers	1999	9393159169

Richard L. Numerical Burden, J. Analysis Douglas Faires, Annette M. Burden	Cengage Learning	2016	9788131516546
--	---------------------	------	---------------

Course Title: Physics Research Project

L	Т	Р	Total Credits
0	0	4	4