	Semester-Wise Programme structure for B.Sc. (H) Biochemistry (3 Years)						
Sr	Yea	r 1	Yea	r 2	Yea	r 3	
.N o.	Semester 1	Semester 2	Semester 3	Semester 4	Semester 5	Semester 6	
1	Biomolecul es [CU:4,L-3 P-1] {MCC}	Carbohydr ate Biochemist ry [CU:4,L- 3 P-1] {MCC}	Biotechniq ues [CU:4,L-3 P-1] {MCC}	Membrane Biology & Bioenerget ics [CU:6,L-4, P-2] {MCC}	Molecular Biology [CU:6,L-4, P-2] {MCC}	Gene Regulation [CU:6,L-4, P-2] {MCC}	
2	Basic Cell Biology [CU:4,L-3 P-1] {MCC}	Fundamen tals of Genetics CU:4,L-3 P-1] {MCC}	Protein Biochemist ry [CU:4,L- 3 P-1] {MCC}	Amino Acid & Nucleic Acid Metabolis m [CU:6,L- 4, P-2] {MCC}	Lipid Biochemist ry [CU:6,L- 4, P-2] {MCC}	Physiologi cal Biochemist ry [CU:6,L- 4, P-2] {MCC}	
3	Introductio n To Microbial World CU:4,L-3 P-1] {MC}	General Microbiolo gy [CU:4,L-3, P-1] {MC}	Enzymolog y CU:4,L-3 P-1] {MC}	Immunolog y [CU:4,L- 4] {MC}'	Endocrinol ogy [CU:4 ,L-4] {MC}	Nutritional and Clinical Biochemist ry [CU:4 ,L-4] {MC}	
4	Fundamen tals of Chemistry [CU:3,L-2, P-1] {MDC}	Fundamen tals of physics [CU:3,L-2, P-1] {MDC}	Programmi ng with R [CU:3,L- 2,P-1] {MDC}	Recombin ant DNA Technolog y [CU:4,L- 3, P-1] {SEC}	Introductor y Bioinforma tics [CU:4 ,L-4] {MC}	Pharmaco genetics [CU:4 ,L-4] {MC}	
5	PL/HCP [CU:1,L-1] {AEC}	PL/HCP [CU:1,L-1] {AEC}	Communic ation skills I [CU:2,L- 2] {AEC}	Communic ation skills II [CU:2,L- 2] {AEC}	Environme ntal Biology [CU:2 ,L-2] {MC}	Plant Biochemist ry [CU:2 ,L-2] {MC}	
6	FBL [CU:1, L-1] {AEC}	FBL [CU:1, L-1] AEC}	Protein Science [CU:3,L-3] {SEC}	-	-	-	
7	Mathemati cs for Bioscience s [CU:3,L- 3] {SEC}	SEC2 - Statistics for Bioscience s [CU:2,L- 2] {SEC}	-	-	-	-	

8	EVS-I [CU:2,L-2] {VAC}	EVS-2 [CU:2,L-2] {VAC}	-	-	-	-
9	Behaviour al Sciences 1 [CU:1,L-1] {VAC}	Behaviour al Sciences 2 [CU:1,L-1] {VAC}	-	-	-	-
C re di ts	23	23	20	22	22	22
•	nework	132				

мсс	Major Core Course				
IVICC	(Discipline Specific Course)				
МС	Minor Course				
MDC	Multidisciplinary Course				
AEC	Ability Enhancement Course				
SEC	Skill Enhancement Course				
VAC	Value Added Course				

	(4 Cr of Summer Internship earned by students during summer Internship after Second
Note:	Semester or Fourth Semester, will be taken into account in Fifth Semester of a student who
	pursue three year UG Programme without taking exit option).

Programme structure for	B.Sc. (H)	Biochemistry ((3 Years) (1s	st Semester)

Sr. Course Code No		Course Code Course Title		Cre	ditUni	ts	
				L	Т	PS	Total Credits
1	BCH101	Basic Cell Biology	Major Core Courses	3	0	1	4
2	BCH102	Biomolecules	Major Core Courses	3	0	1	4
3	MBO104	Introduction to Microbial World	Minor Courses	3	0	1	4
4		Fundamentals of Chemistry	Multi-disciplinary coiurse	2	0	1	3
5	MAT113	Mathematics for Biosciences	Skill Enhancement Course	3	0	0	3
6	ENV101	Environment Studies - I	Value Added Course	2	0	0	2
7	PSY101	Behavoiral Studies-I	Value Added Course	1	0	0	1
8	FOL101/FOL 102	Foreign Language	Ability Enhancement course	1	0	0	1
9	INL101/INL1 02	Punjabi Language/Punjab History & Culture	Ability Enhancement course	1	0	0	1
L		Total Credits				l	23

(Courses under MDC can be floated through MOOC.)

BCH101: Basic Cell Biology

L	Т	Р	Total Credits
3	0	1	4

Course Objectives: To develop basic understanding of cell biology

	Teaching load
Unit I: Introduction to the Cell: theory and Broad Classification	18 hrs
Cell: The cell theory, Broad Classification of cells, Structure and function of cell	
organelles, Cytoskeletal structures (actin, microtubules etc.).	
Unit II: Cell wall and Cell Membrane	18 hrs
Cell wall and Cell Membrane: physical structure of model membranes in	
prokaryotes and eukaryotes, lipid bilayer, membrane proteins, other	
constituents; diffusion, osmosis, active transport, and regulation.	
it III: Cell division and cell cycle	18 hrs
 Cell division and cell cycle: Mitosis and meiosis, Cell cycle, Apoptosis, Necrosis and Autophagy. Cell transformation and cancer: oncogenes and proto-oncogenes, Tumor suppressor genes, metastasis. Contribution of Nobel laureates in elucidation of the DNA structure, cell death and cell cycle. 	
Unit IV: Cell Signalling	18 hrs
Cell signalling: General principles, signal transduction, Hormones and their receptors, second messengers, regulation of signalling pathways, bacterial chemotaxis and quorum sensing.:, Cell adhesion molecules, contribution in cell communication	

List of Experiments -with basic instructions

- 1. To study different parts of microscope
- 2. Cytochemical staining of proteins by Methylene blue
- 3. Cytochemical staining of polysaccharides by PAS
- 4. Study of stages of Mitosis using onion root tip
- 5. Study of stages of Meiosis in onion flower buds
- 6. Preparation of Buccal Smear for microscopic examination
- 7. To study the effect of isotonic, hypotonic and hypertonic solutions on cells
- 8. To demonstrate cell viability and cell death

Course Learning Outcomes:

- Understand types of cells and cellular organelles.
- Identify differences in the structure of different types of cell walls and membranes.
- Compare the cell division and cell cycle.
- Perceive knowledge of signalling cascades and communication networks in the cell.

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
De-Robertis, F.D.P., and De- Robertis Jr. E.M.F.	Cell and Molecular Biology	Lippincott Williams & Wilkins	2011	978126021971 8	233
Geoffrey, M	The Cell: A molecular approach.	Oxford Sinauer Associates, Oxford University Press	2014	978- 0070083660	322
Lodish, H.F	Molecular Cell Biology.	Macmillan International)	2021	978126036382 1	456

BCH102: Biomolecules

L	Т	Р	Total Credits
3	0	1	4

Course content and syllabus

	Teaching Hours
Unit I: Water and its Properties	14 hrs
Water and its Properties: Dissociation and association constants, pH and buffers. pI, pKa, Henderson Hasselbalch equation and its implications. Basic Thermodynamics: Laws of thermodynamics. Concepts of Δ G, Δ H and Δ S.	
Unit II: Carbohydrates	13 hrs
Carbohydrates : Structure, properties and functions of: Monosaccharides (glucose,fructose, ribose and others, D-and L- sugars, reducing and non-reducing sugars), Disaccharides (maltose, sucrose and lactose) and polysaccharides (Starch and glycogen)	
Unit III: Lipids and Nucleic Acids	13 hrs
Lipids: Classification, Structure and function. Conformation of Nucleic acids: Structural characteristics of A, B and Z-DNA. Significance of DNA and RNA.	
Unit IV: Proteins	14 hrs
Proteins: Physico-chemical and structural properties of amino acids, non-protein and rare amino acids. Protein Structure: Primary, Secondary, Tertiary, Quaternary, structure of proteins, Forces stabilizing Primary, Secondary and Tertiary protein structures. Enzymes: structure & function.	
hydrogen bonding. Interactions with solvents, Hydrophobic effect.	1

List of Practicals with basic instructions

- 1. Preparation of solutions and buffers.
- 2. Preparation of 0.1M phosphate buffer, pH 7.4, 250ml without using the pH meter. (By usingHenderson –Hasselbalch equation)
- 3. Verification of Beer Lamberts Law.
- 4. Estimation of carbohydrate in given solution by anthrone method.
- 5. Study the presence of reducing/non-reducing sugar in biological samples.
- 6. Protein estimation by Lowry's method and other methods.
- 7. Determination of acid value and saponification value of a fat.

Course Learning Outcomes:

- Understand the law of thermodynamics, water, and its properties.
- Determine the structure and properties of carbohydrates.
- Comparing the structure of various types of lipids, and their role on biological systems.
- Evaluate the structure and functional properties of proteins.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Wilson K., Walker J.	Principle and Techniques of Biochemistry and Molecular Biology	Cambridge University Press	6th edition/2006	978- 0521178747	744
Plummer, David	An Introduction to Practical Biochemistry	Tata Mc Graw Hills	3 rd edition/2017	978- 0070994874	250

MBO104: Introduction to Microbial World

L	т	Ρ	Total Credits
3	0	1	4

Course Objectives: Explore the microbial world to comprehend its diversity, and foster a foundational understanding of microbiology's relevance to scientific inquiry and practical applications.

Course content and syllabus

	Teaching Hours
Unit I: Introduction to Microbiology	14 hrs
Evolution, microbial life and biosphere, Brief history of Microbiology, naming and classification of microbes, Binomial Nomenclature, Whitaker's five kingdom system, CarlWoese three kingdom of classification, Difference between prokaryotic and eukaryotic microorganisms. Introduction to bacterial taxonomy– Bergey's manual of Systematic Bacteriology (Eubacteria and Archaebacterium).	
Unit II: The Prokaryotes: Domain Bacteria and Archaea	13 hrs
The prokaryotic groups, Domain Bacteria: Gram negative and Gram positive bacteria. Domain Archaea, diversity in archaea. Microbial Growth and Nutrition: The common nutritional requirements, Nutritional types of Microbes, Microbes and Human welfare, Microbes and Human disease.	
Unit III: The Eukaryotes- Fungi, Algae, Protozoa and Helminths	14 hrs
Algae: General characteristics of algae, Different types of life cycles in algae, Selectedphyla of algae, roles of algae in nature. Lichens	
Fungi : General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra-structure, Medically important fungi, Fungal diseases. Protozoa	

General characteristics with special reference to Amoeba, Paramecium, Plasmodium, Leishmania and Giardia, Medically important protozoa. General characteristics of slimemolds and helminths.	
Unit IV: Viruses, Viroids and Prions	13 hrs
General characteristics of Viruses, Viroids and Prions - Host range, virus size, viral structure-nucleic acid, capsid and envelope, general morphology, taxonomy of viruses, Latent and	
persistent viral infections, Diseases associated with viruses, viroid and prions.	

List of Experiments -with basic instructions (Total Teaching = 36 hrs)

- 1. Microbiology-Good Laboratory Practices and Bio-safety.
- 2. To study the principle and applications of important instruments (biological safety cabinets, autoclave, incubator, hot air oven, light microscope, pH meter) used in the microbiology laboratory.
- 3. Preparation of culture media for bacterial cultivation.
- 4. Sterilization of medium and glassware using Autoclave and Hot air oven, respectively and assessment for sterility.
- 5.

Course Learning Outcomes:

- Understand diversity of Microbial world
- Evaluate bacterial classification and diversity
- Perceive knowledge of cellular organization of bacteria and archaea
- To understand the nutritional requirements of bacteria and different bacteriological techniques.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Pelczar, M.J. Jr., Chan ECS and Krieg, N.R.	Microbiology :Concepts and Applications	New York; Madrid: McGraw-Hill,	1993	0070492581, 97800704925 8 5	957

Cappucin o,J.G.	Microbiology -A laboratory manual, 4th ed., Harlow, Addition- Wesley.	Hoboken, N.J.:Pearson	2020	0135188997, 97801352039 96, 0135203996	541
Tortora GJ, Funke BR andCase CL	Microbiology :An Introduction. 9th edition	Pearson Educatio n	2008	0805347917	912
Madigan MT, Martinko JM, Dunlap PV andClark DP.	Brock Biologyof Microorgani sms	Pearson Internationa IEdition	2014	97812920183 1 7	1030
James T. Staley Robert P. Gunsalus, Stephen lory,Jerome J. Perry	MICROBIAL LIFE	Sinauer Associate s;2nd edition	2007	0878936858, 97808789368 5 4	1066

MAT113: Mathematics for Biosciences

L	Т	Ρ	TOTAL CREDIT UNITS
3	0	0	3

Course Objectives: This course introduces the fundamentals of basic mathematics required in the program on Biosciences. It includes the basic elements of Sets, Relations, Functions and their properties; Matrices Algebra; Differential Calculus and Integral Calculus. This course will develop analytical abilities to make exact calculations and will provide counting educational base to the students.

Course Contents/syllabus:

-

	Teaching Hours	
Unit I: Sets, Relations and Function	13 H	
Sets Types of Sets, Subsets, Complement of Sets, union and Intersection of Sets, Difference of Sets, Demorgan's Law, Cartesian product of Sets, relations, functions and their types and graphs		
Unit II: Matrix Algebra	13 H	
Matrices, Types of Matrices, Addition of matrices, Subtraction of matrices and Product of matrices. Properties of Matrix Multiplication. Transpose of Matrix, Symmetric and Skew-symmetric Matrices, Inverse of Matrix and solving system of linear equations using Cramer's rule.		
Unit III: Differential Calculus		
Algebra of limits, Continuity, Derivative of a function, Fundamental rules for differentiation, , , Derivatives of Implicit function, Inverse trigonometric function, Exponential and Logarithmic function, Parametric form, increasing decreasing function.		
Unit IV: Integral Calculus	14 H	
Indefinite and definite integrals, methods of Integration, Properties of definite integrals, Areas of bounded regions.		

Course Learning Outcomes:

On the successful completion of this course,

- Students will demonstrate the ability to distinguish corresponding sets as representations of relations or functions by the analysis of graphical, numeric, or symbolic data
- Students will demonstrate the ability to apply the concept of matrices in real-life situations
- Students will understand the concepts of Limits, Continuity and Differentiability and their applications
- Students will understand and analyze the concept of Integration with the help of Differentiation and study its various applications

AUTHOR	TITLE	Publisher	Year of publication	ISBN
George B. Thomas Jr., JoelHass, Christopher Heil &Maurice D. Weir	Thomas' Calculus (14th edition)	Pearson Education	2018	978-9353060411
H.K. Dass	Higher Engineering Mathematics	S. Chand	2014	978-8121938907

ENV101: Environmental Studies -I

L	Т	Ρ	TOTAL CREDIT UNITS
2	0	0	2

Course Contents/syllabus:

	Teaching Hours
Unit-1- Multidisciplinary nature of environmental studies and Natural Resources-1	9 hrs
<i>Multidisciplinary nature of environmental studies</i> : Definition, scope and importance; components of environment –atmosphere, hydrosphere, lithosphere and biosphere. Concept of sustainability and sustainable development.	
<i>Natural resources</i> : Land resources and land use change, land degradation, soil erosion and desertification.	
Unit-2- Natural Resources-2	9 hrs
Deforestation: causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal population.	
Water Resources-Use and over-exploitation of surface and groundwater, floods, drought, conflicts over water (international and inter-state).	
Heating of earth and circulation of air; air mass formation and precipitation. Energy resources- renewable and non-renewable energy sources, use of alternate energy sources, Growing energy needs, Case studies.	
Unit-3-Ecosystems	9 hrs
<i>Ecosystem</i> : What is an ecosystem; Structure and function of an ecosystem; Energy flow in the ecosystem; Food chains, food webs and ecological succession. Case studies of thefollowing ecosystems:	
Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).	
Unit-4- Biodiversity and its conservation	9 hrs

Biodiversity: Levels of biological diversity: genetic, species and ecosystem diversity; Biogeographic zones of India; biodiversity patterns and global biodiversity hot spots. India as a mega–biodiversity nation; endangered and endemic species of India. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts, biological invasions; conservation of biodiversity: *in-situ* and *ex-situ* conservation of biodiversity.

Ecosystem and biodiversity services: ecological, economic, social, ethical, aesthetic and information value.

Course Learning Outcomes:

- Understand natural resources and evaluate limitations surrounding renewable and non-renewable resources
- Understand the nuances of ecosystem and learn about behaviour of various ecosystem
- Learn about the types, services and threats to our biodiversity and importance of conserving it.

AUTHOR	TITLE	Publisher	Year of	ISBN	Pages
			publication		
William P. Cunningham, Mary Ann Cunningham	Principles of Environmental Science	McGraw-Hill	2019	978126021971 8	
Dash and Dash	Fundamentals of ecology	Tata McGraw- Hill Education	2009	978- 0070083660	
William P. Cunningham, Mary Ann Cunningham, Barbara Woodworth Saigo	Environmental Science: A global concern,	McGraw-Hill	2021	978126036382 1	
Gaston K.J. and Spicer, J. I.	Biodiversity – An Introduction 2 nd edition	Blackwell Publishing	2004	978-1-405- 11857-6	

FOL101 (Introduction to French Culture & Language)

L	Т	Р	Total Credits
1	0	0	1

Course Objectives- The course aims to provide students with a foundational understanding of French culture and language, including key aspects of French society, history, and customs. Through linguistic and cultural immersion, students will develop basic communication skills in French and gain insights into the cultural nuances of the Francophone world.

Contents/syllabus:

	Teaching
	hours
Unit-I Introduction to French language	3 hrs
Brief introduction of French and Francophone countries	
Presenting oneself	
Getting information about someone else	
Greeting and taking leave	
Asking/giving personal information	
Unit-II- A rendez-vous ; Visiting a place	6 hrs
Pronouncing and writing numbers in French	
Spell and count numbers	
Telling the time	
Temporal expressions	
Communicating in class	
Fixing an hour, place for a meeting.	
Describing a person.	
Identifying a person, object and place	
Describing relation in a family	
A specific person, object and place	
Unit-III- An interview	4.5 hrs
Description of objects, people and places	
Nationalities	
Speaking about one's professions	
Expressing Actions using regular –er ending verbs; avoir, être; reflexive verbs –	
usage, conjuagation	
Interview of celebrity	
Unit-IV- At the discotheque	4.5 hrs
Portrait by a journalist	
Giving a positive or negative reply	
Asking questions	
Discussion with a person	
Activities in a day	

Course Learning Outcomes: At the end of this course, the students will be able to

express themselves in writing and orally in basic French. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language. At the endof the course, the student shall be able to :

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context
- Analyse and break-down information to create new ideas
- Evaluate and express opinion in a given context

Author	Title	Publisher	Year	ISBN No
Christine Andant, Chaterine Metton, Annabelle Nachon, Fabienne Nugue	A Propos - A1 Livre De L'Eleve, Cahier D' Exercices	Langers International Private Limited	2010	978- 938080 9069
Manjiri Khandekar and Roopa Luktuke	Jumelage - 1 Methode De Fraincais - French	Langers International Private Limited	2020	978- 938080 9854
Michael Magne, Marie-Laure Lions-Olivieri	Version Originale 1: Cahier d'exercices	Maison Des Langues	2010	978848 443561 7

FOL102 (Introduction to German Culture & Language)

L	Т	Р	Total Credits
1	0	0	1

Course objectives- At the end of this course, the students will be able to express themselves in writing and orally in basic German. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and the foreign accent of the language.

Course Contents/syllabus:

	Teaching hours
Unit-I Introduction to German Language (Einführung)	3 hrs
Introduction to German as a global language, Self-introduction and Greetings, Die	
Alphabeten, Phonetics: the sound of consonants and vowels, Wie buchstabieren	
Sielhren Name?	
Unit-II- Numbers and everyday conversation (die Zahl und Gespräche)	6 hrs
Counting in German from 1-100, Simple Calculation and verb 'kosten' - Wie viel	
kostetdas? Plural Forms, Vocabulary: Wochentage, Monate, Jahreszeiten, Ordinal	
numbers and the question - Wann haben Sie Geburtstag?	
Unit-III- Regular verbs and nominative case: articles and pronouns	4.5 hrs
(Regelmässige Verben und Nominativ Kasus: Artikel und Pronomen)	
Introduction to all personal pronouns and conjugation of Regular verbs Detailed	
exercise on regular verbs. Reading a text on regular verbs. Introduction to definite.	
Vocabulary: Schulsachen und Getränke, Nominative case/ Articles (der, die, das)	
Nominative Pronouns: - Applicability of pronouns for both persons and things.	
Usage of nominative Personal Pronouns Introduction of nominative possessive	
pronouns usage	
of nominative possessive pronouns	
Unit-IV- The Family, Work-life and Professions (Familienmitglieder und	4.5 hrs
Berufe) & Interrogative sentences (W-Fragen)	
The Family, Work-life and Professions (Familienmitglieder und Berufe)	
Vocabulary: Professions and conjugation of the verb 'sein' Introduction to simple	
possessive pronouns with the help of the verb 'haben' Usage of possessive	
pronouns.Interrogative sentences (W-Fragen) W-Fragen: who, what, where,	
when, which, how,how many, how much, etc. Exercises on the question	
pronouns	

Course Learning Outcomes: At the endof the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- Apply information in a new way in a practical context
- Analyse and break-down information to create new ideas
- Evaluate and express opinion in a given context

Author	Title	Publisher	Year	ISBN
Rolf Bruseke	Starten Wir A 1	Langers InternationalPvt Ltd (Max Hueber Verlag)	2017	978- 31901600 06
Giorgio Motta	Wir Plus Grundkurs Deutsch furJunge Lerner Book	Ernst Klelt Verlog	2011	978- 81830721 20
Heimy Taylor, Werner Haas	Station en Deutsch Self Study Course German Guide	Wiley	2007	978- 04701655 18

PSY101 (Behavioural Science: Understanding Self for Effectiveness)

L	Т	Р	Total Credits
1	0	0	1

Course Contents/syllabus:

	Teaching
	time
Unit I: Self: Core Competency	4.5 hrs
Understanding of Self, Components of Self – Self identity, Self concept, Self	
confidence	
, Self image , BIG5 Factors	
Unit II: Techniques of Self Awareness	4.5 hrs
Exploration through Johari Window, Mapping the key characteristics of self,	
Framing acharter for self Stages – self awareness, self acceptance and self	
realization	
Unit III: Self Esteem & Effectiveness	4.5 hrs
Meaning, Importance, Components of self esteem, High and low self esteem,	
Measuring your self esteem	
Unit IV: Building Positive Attitude and Emotional Competence	4.5 hrs
Meaning and nature of attitude, Components and Types of attitude, Importance	
and relevance of attitude Emotional Intelligence – Meaning, components,	
Importance and Relevance Positive and negative emotions, Healthy and Unhealthy	
expression of	
emotions	

Course Learning Outcomes: At the end of this course, the students will be able to:

- The student will apply self-introspection as a tool for self-awareness.
- The student will understand self-concept for self-recognition, self-improvement and perception of others.
- The student will be able to analyze their physical self, social self, the competent self and psychological self.

The student will be able to analyze what motivates his/her actions and the actions of others

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	
Singh A.	Achieving Behavioural	Wiley	2012	97881265
	Excellence for Success	Publication		8027
Towers, Marc	Self Esteem	mericanMedia	1995	97818849
				26297
Pedler Mike, Burgoyne	A Manager's Guide to Self-	McGraw-Hill	2006	978-
John, Boydell Tom	Development			00771147
				01

Covey, R. Stephen	Seven habits of Highly Effective People	Simon & Schuster Ltd	2013	978- 14516396 12
Khera Shiv	You Can Win	Macmillan	2005	978- 03339374 02
Gegax Tom	Winning in the Game of Life	Harmony Books	1999	978- 06096039 25
Singh, Dalip	Emotional Intelligence at Work	Publications	2006	97807619 35322
Goleman, Daniel	Emotional Intelligence	BantamBooks	2007	97805530 95036
Goleman, Daniel	ing with E.I	Bantam Books	1998	97805531 04622

INL101 (Punjabi)

L	т	Ρ	Total Credits
1	0	0	1

	Teaching Hours
Unit I:	4 hours
ਆਧੁਨਿਕ ਪੰਜਾਬੀ ਕਵਿਤਾ ਦਾ ਅਧਿਐਨ (ਕਾਵਿ-ਸੁਮੇਲ ਪਾਠ-ਪੁਸਤਕ)	
ਕਵਿਤਾ ਦਾ ਸਾਰ/ਕੇਂਦਰੀ ਭਾਵ ਅਤੇ ਪ੍ਰਸੰਗ ਸਾਹਿਤ ਵਿਆਖਿਆ	
ਕਵੀ ਦੇ ਜੀਵਨ ਅਤੇ ਸਾਹਿਤਕ ਯੋਗਦਾਨ ਬਾਰੇ ਮੁੱਢਲੀ ਜਾਣਕਾਰੀ	
Unit II:	4 hours
1.ਲੇਖ-ਰਚਨਾ	
ਲੇਖ-ਰਚਨਾ: ਮਹੱਤਵ, ਕਿਸਮਾਂ ਅਤੇ ਵੱਖ-ਵੱਖ ਵਿਸ਼ਿਆਂ ਅਨੁਸਾਰ ਵਿਹਾਰਕ ਅਭਿਆਸ	
2.ਸੰਖੇਪ-ਰਚਨਾ	
ਸੰਖੇਪ-ਰਚਨਾ: ਮਹੱਤਵ ਅਤੇ ਤਕਨੀਕ	
Unit III:	5 hours
ਵਿਆਕਰਨ ਸਿਧਾਂਤ ਅਤੇ ਵਿਹਾਰ:	
1.ਵਿਆਕਰਨ: ਪਰਿਭਾਸ਼ਾ;ਮਹੱਤਤਾ;ਉਦੇਸ਼;ਵਿਆਕਰਨ ਦੇ ਅੰਗ	
2. ਪੰਜਾਬੀ ਧੁਨੀਵਿਓਂਤ: ਸ੍ਵਰ ਅਤੇ ਵਿਅੰਜਨ ਧੁਨੀਆਂ ਦਾ	
ਵਰਗੀਕਰਨ, ਉਚਾਰਨ ਅੰਗ	
Unit IV:	5 hours
ਵਿਆਕਰਨ ਸਿਧਾਂਤ ਅਤੇ ਵਿਹਾਰ:	
ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ: ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਪ੍ਰਕਾਰ	
ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ, ਕਿਰਿਆ, ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ, ਸਬੰਧਕ,ਯੋਜਕ	
ਅਤੇ ਪ੍ਰਸ਼ਨ-ਸੂਚਕ ਸ਼ਬਦ	

Course content and syllabus

Course Learning Outcomes:

- Understand modern Punjabi Poetry.
 Interpret the importance of essay and precise writing
 Analyze the Punjabi language structure and grammar.
 Examine the impact and importance of grammar and language structure.

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
ਡਾ. ਕਰਮਜੀਤ ਸਿੰਘ	ਕਾਵਿ ਸੁਮੇਲ	ਪਬਲੀਕੇਸ਼ਨ ਬਿਊਰੋ,	2020	-	-
(ਸੰਪਾ.),		ਪੰਜਾਬ ਯੂਨੀਵਰਸਿਟੀ			
		ੁ ਚੰਡੀਗੜ੍ਹ			
ਸੁਰਿੰਦਰ ਸਿੰਘ ਖਹਿਰਾ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	ਪਬਲੀਕੇਸ਼ਨ	2015	-	-
(ਸੰਪਾ.),	ਵਿਆਕਰਨ	ਬਿਊਰੋ,ਪੰਜਾਬੀ			
	ਅਤੇ ਬਣਤਰ	ਯੂਨੀਵਰਸਿਟੀ ਪਟਿਆਲਾ			
ਡਾ.ਹਰਕੀਰਤ ਸਿੰਘ,	ਕਾਲਜ	ਪੰਜਾਬ ਸਟੇਟ	1999	-	-
	ਪੰਜਾਬੀ	ਯੂਨੀਵਰਸਿਟੀ ਟੈਕਸਟ			
	ਵਿਆਕਰਨ	ੁ ਬੁੱਕ ਬੋਰਡ,ਚੰਡੀਗੜ੍ਹ			
	ਅਤੇ ਲੇਖ				
	ਰਚਨਾ				
ਡਾ. ਪ੍ਰੇਮ ਪ੍ਰਕਾਸ਼ ਸਿੰਘ	ਕਾਲਜ	ਮਦਾਨ ਪਬਲੀਕੇਸ਼ਨਜ਼,	2002	-	-
	ਪੰਜਾਬੀ	ਪਟਿਆਲਾ			
	ਵਿਆਕਰਨ				
	ਅਤੇ ਲੇਖ				
	ਰਚਨਾ				
ਡਾ. ਬੂਟਾ ਸਿੰਘ ਬਰਾੜ	ਪੰਜਾਬੀ	ਚੇਤਨਾ ਪ੍ਰਕਾਸ਼ਨ,	2012	-	-
	ਵਿਆਕਰਨ	ਪੰਜਾਬੀ ਭਵਨ,ਲੁਧਿਆਣਾ			
	ਸਿਧਾਂਤ ਅਤੇ				
	ਵਿਹਾਰ				
ਡਾ. ਬੂਟਾ ਸਿੰਘ ਬਰਾੜ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	, ਵਾਰਿਸ ਸ਼ਾਹ	2012	-	-
	ਸ੍ਰੋਤ ਅਤੇ	ਫ਼ਾਊਂਡੇਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ			
	ਸਰੂਪ				
ਦੁਨੀ ਚੰਦ੍ਰ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	, ਪੰਜਾਬ ਯੂਨੀਵਰਸਿਟੀ	1995	-	-
	ਦਾ	ਪਬਲੀਕੇਸ਼ਨ ਬਿਊਰੋ,			
	ਵਿਆਕਰਣ	ਚੰਡੀਗੜ੍ਹ			
ਜੋਗਿੰਦਰ ਸਿੰਘ	ਪੰਜਾਬੀ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	2003	-	-
ਪੁਆਰ ਅਤੇ ਹੋਰ	ਭਾਸ਼ਾ ਦਾ	ਅਕਾਦਮੀ ਜਲੰਧਰ			
	ਵਿਆਕਰਨ				

	(ਭਾਗ			
	1,2,3),			
ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ	2010	 -
	ਵਿਗਿਆਨ	ਜਲੰਧਰ		
ਅਗਨੀਹੋਤਰੀ,ਵੇਦ	ਪਰਿਚਾਇਕ	ਦੀਪਕ ਪਬਲਿਸ਼ਰਜ਼	1981	
	ਭਾਸ਼ਾ	ਜਲੰਧਰ		
	ਵਿਗਿਆਨ			

INL102 (History and Culture of Punjab)

L	Т	Р	Total Credits
1	0	0	1

Course Contents/syllabus

	Teaching
	hours
Unit I:	4.5 hrs
Harappan Civilization: extent and town planning and socio-economic life.	
Growth and impact of Jainism and Buddhism in Panjab.	
Unit II:	4.5 hrs
Society and Culture under Maurayas and Guptas. Bhakti movement: Main features; prominent saints and their contribution. Origin and development of Sufism	
Unit III:	4.5 hrs
 Evolution of Sikhism: teaching of Guru Nanak; Institutional Development- Manji, Masand, Sangat and Pangat Transformation of Sikhism: Martyrdom of Guru Arjan; New policy of Guru Hargobind, martyrdom of Guru Tegh Bahadur. Institution of Khalsa: New baptism; significance 	
Unit IV:	4.5 hrs
10. Changes in Society in 18th century: social unrest; emergence of misls and other institutions - rakhi, gurmata, dal khalsa.	
Society and Culture under Manaraja Ranjit Singn. 12 MAP (of undivided physical geographical map of Puniab): Major Historical	
Places: Harappa, Mohenjodaro, Sanghol, Ropar, Lahore, Amritsar, Kiratpur, Anandour Sabib, Tarn Taran, Machbiwara, Goindwal, Khadur Sabib	

Course Learning Outcomes:

- Understand the history of various cultures in Punjab.
- Interpret the importance of Maurayan, Gupta and Bhakti influences on PunjabApply the teaching of Sikhism on the emergence of the Khalsa .
- Examine the impact societal changes on socio-cultural and physical landscape of Punjab

Author	Title	Publisher	Ed/year	ISBN No
L.M Joshi,	History and Culture of the Punjab, Part-I	Punjabi University, Patiala	1989,3 rd	-
Buddha Prakash	Glimpses of Ancient Punjab	Punjabi University, Patiala,	1983	-

Khushwant Singh	A History of the Sikhs, vol I: 1469-1839,	oxford University Press, Delhi	1991	-
-				

Fundamentals of Chemistry

L	т	Ρ	TOTAL CREDITS
2	0	1	3

Course Objectives: To develop basic understanding of atomic structure and related physicochemical properties of elements of the periodic table. In addition, this course focuses on fundamentals of organic molecules, structure, bonding, reactivity and reaction mechanisms as well as familiarization with the chemistry and biochemical role of biomolecules and related drug-like chemical molecules.

-

Course Content

	Teaching Hours
Unit 1: The Periodic Table : History and Periodic Trends	9 hrs
Introduction to atomic theories : Bohr's theory, de-Broglie theory, wave-particle duality, Schrodinger equation ; structure of atom and electron-filling rules in atomic orbitals; introduction to modern periodic table and key trends in physico-chemical elemental properties (size, shape, melting points, electron affinity, acid-base properties)	
Unit 2: Basic Organic Chemistry -I	9 hrs
Hybridization : Concept, valence bond theory, Shapes of molecule and reactive intermediates, effect on bond properties, , Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects of different functional groups, hyperconjugation and their applications; acids and bases: classification, factors affecting relative strength of inorganic and organic acids and bases, types of acid-base reactions, hard and soft acids and bases (HSAB) principle and applications	
Unit 3: Basic Organic Chemistry -II	9 hrs
 Reaction mechanisms: Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles, organic reactions and their mechanism (Addition/Elimination and Substitution reactions), Coordination compounds : Introduction, nomenclature, nature and classification of ligands, hapticity, syntheses and applications of coordination compounds 	

Unit4: Chemistry of biomolecules	9 hrs
Cell membrane and ion-transport : Structure, function and types of	
phospholipids, physiological significance of ions and intracellular ion-transport	
proteins (Na ⁺ /K ⁺ pump) Enzymes and drugs: Definition, structural model,	
properties of enzymes, cofactors, apoenzyme, holoenzyme, factors affecting	
kinetics of enzymatic reactions, chemical mode of action of critical physiological	
enzymes, nomenclature, classification, properties and inhibitory mode of action	
of certain chemical drug-like chemical molecules like NSAIDs and antibiotics.	

Lab Practicals

List of Experiments:-

Inorganic Chemistry Practicals

- Titrimetric Analysis : Acid-Base Titrations
 (i) Apparatus calibration and preparation of solutions of different molarity/normality of titrants.
- (ii) Estimation of carbonate and hydroxide present together in mixture.
 (iii) Estimation of carbonate and bicarbonate present together in a mixture.
- Organic Chemistry Practicals
- Affinity-based separation of a mixture of commercial drug-like molecules and phytochemical mixtures by thin layer chromatography and column chromatography.
- Biophysical Chemistry Practicals
- Rate of enzymatic reactions:

a. Determine the effect of physical factors on peroxide-decomposing rate of catalase enzyme in potatoes : (i) pH (ii) surface area (iii) temperature (iv) metal ions
b. Determination of viscosity of aqueous and organic solutions of biomolecules using Ostwald's viscometer.

Course Learning Outcomes

- 1. Knowledge of evolution of scientific theories to explain the atomic structure, molecular geometry and physico-chemical behaviour of atomic matter made from elements in periodic table.
- 2. Focus on fundamentals of organic molecules, structure, stereochemistry, bonding, reactivity.
- 3. Familiarization with types and mechanistic pathways of electron-transfer routes
- 4. Understanding of the cross-talk between the chemistry of biological molecules and drug-like chemical molecules

Text Books

A. Theory

Author	Title	Publisher	Ed/year	ISBN No	Pages
J.D. Lee	Concise Inorganic Chemistry	John Wiley and Sons Ltd	5th edition (2016)	978- 8126515547	

Greenwood, Earnshaw	Chemistry of the Elements	Butterworth- Heinemann	2nd edition (1997)	978- 0750633659	
M. B. Smith, J. March, March's	Advanced Organic Chemistry: Reactions, Mechanisms, andStructure	Wiley- Interscience	8th Edition (2015)	978- 8126556588	
Atkins P.W, Julio de Paula	Physical Chemistry	Oxford University Press, ELBS	11th edition (2018)	978- 0198814740	

B. Practicals

Author	Title	Publisher	Ed/year	ISBN No	Pages
J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas , Vogel's	Vogel's Quantitative Chemical Analysis	Longman	6th edition (1999)	978- 0582226289	
A.I. Vogel, A.R. Tatchell, B.S. Furnis	Vogel's Textbook of Practical Organic Chemistry	Prentice Hall	5th edition (2003)	978- 0582462366	
Shoemaker, D.P Garland, C.W Nibler, J.W.	Experiments in Physical Chemistry	McGraw Hill Inc	8th edition (2008)	978- 0070570078	

Programme structure for B.Sc. (H) Biochemistry (3 Years) (2ndSemester)

Sr. No	Course Code	Course Title	Course Type	Cre	CreditUnits		
				L	Т	PS	Total credits
1	BCH105	Carbohydrate Biochemistry	Major Core Course	3	0	1	4
2	HGM101	Fundamentals of genetics	Major Core Course	3	0	1	4
3	MBO102	General Microbiology	Minor Course	3	0	1	4
4	PHY213	Fundamentals of Physics	Mult- disciplinary course	2	0	1	3
5	ENV106	Environmental Studies-II	Value Added Course	2	0	0	2
6	PSY106	Behavioural Science - II	Value Added Course	1	0	0	1
7	MAT114	Statistics for Biosciences	Skill Enhancement Course	3	0	0	3
8	FOL103/ FOL104	Foreign Business Language –II	Value Added Course	1	0	0	1
9	INL104/ INL106	Punjabi Language/ History and Culture of Punjab	Ability Enhancement Course	1	0	0	1
L	•	Total Credits					23

(Courses under MDC can be floated through MOOC.)

BCH105-Carbohydrate Biochemistry

L	Т	Р	TOTAL CREDITS
3	0	1	4

Course Objectives: To understand the structure, catabolism & anabolism of carbohydrates; regulation & malfunction of the pathways associated with carbohydrate metabolism

Course contents-

	Teaching Hrs		
Unit I:Carbohydrates structure and functions			
Various classes of carbohydrates; Glycosaminoglycans; Bacterial polysaccharides, Glycoproteins (O- and N-glycoproteins). Role of carbohydrates in molecular targeting & cell recognition. Physical and chemical methods for determining the structure of polysaccharides			
Unit II: Carbohydrate Metabolism	18 hrs		
Introduction to metabolism. Important metabolic principles. Methods used for studying metabolism. Sources of carbohydrates in food, digestion and absorption of carbohydrates in human body. Metabolic pathways for the degradation of carbohydrates: Catabolism of glucose, fructose and galactose. Fermentation, Pasteur effect, Tricarboxylic acid cycle (anaplerotic and cataplerotic reactions), Glyoxylate cycle and its significance			
Unit III: Biosynthetic pathways			
HMP pathway: Importance of generation of NADPH, Glutathione and red cell membrane integrity, glycogenolysis. Major pathways for biosynthesis of carbohydrates: gluconeogenesis and glycogenesis, glycogen storage diseases. Biosynthesis of disaccharides (sucrose. lactose), amino sugars, cell wall polymers and mucopolysaccharides.			
Unit IV: Regulation of metabolic pathways	18 hrs		
Regulation of glycolysis, gluconeogenesis, TCA, HMP pathway and glycogen metabolism. Shuttle systems for moving reducing equivalents. Various mechanisms of metabolic regulations. Kinetic factors. Feed back inhibition and feed forward stimulation. Reversible and irreversible covalent modification of regulatory enzymes. Monocyclic cascade systems. Cyclic AMP (cAMP) and Ca ²⁺ ions as bioregulators. Levels of glucose in blood and its regulation. Glucose tolerance test: oral and intravenous. Procedure and interpretation. Glycosuria, glycosylated hemoglobin Defects of regulation of carbohydrate metabolism metabolic characteristics and symptoms.			

List of Experiments -with basic instructions

- 1. Estimation of blood glucose.
- 2. Hydrolysis of starch/glycogen by α -amylase.
- 3. Extraction and assay of glycogen from liver/muscle tissue.
- 4. Estimation of Lactose in milk by DNS method.
- 5. Qualitative and quantitative tests of sugar in urine.
- 6. To assay α -amylase activity in serum
- 7. Estimation of pyruvate/ LDH activity.
- 8. Determination of the activities of the Kreb's cycle dehydrogenases in the liver.

Course Learning Outcomes:

- Understand carbohydrates' structure and functions in biological systems
- Understanding anabolic and catabolic pathways of carbohydrate metabolism
- Delineation of central metabolic pathways
- Understanding the key components and mechanisms for the regulation of central metabolic pathways

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
David L. Nelson; Michael M. Cox	Lehninger: Principles of Biochemistry	8 th ed. W.H. Freeman;	2021	978- 131922800 2	1248
Donald, V. and Judith G.V.	Biochemistry	4 th ed. Wiley	2010	978- 047057095 1	1428
Lubert Stryer	Biochemistry	9 th ed. W.F. Freeman and Co	2019	978- 131911467 1	1296
Hiram Gilbert	Basic Concepts in Biochemistry: A Student's Survival Guide	McGraw-Hill Medical	1999	978- 007135657 2	311

HGM101: Fundamentals of Genetics

L	Т	Р	Total Credits
3	0	1	4

Course Objectives: Explore the foundational principles of genetics, equipping students with essential knowledge of inheritance patterns, molecular mechanisms, and genetic diversity to understand biological processes and applications.

Course contents-

	Teaching Hours
Unit I Science of Genetics	12 hrs
DNA and RNA as genetic material, Brief history of genetics, Mendel and his experiments; Principles of segregation and independent assortment and their chromosomal basis; Test cross; Application of laws of probability to Mendelian inheritance. Understanding Punnet square and its numericals.	
Unit II Mendelian Genetics	15 hrs
Chromosome Theory of Heredity (Sutton-Boveri), Inheritance patterns, phenomenon of Dominance and Dominance relationships (complete dominance, incomplete dominance and co-dominance), Multiple allelism; Lethal alleles; Pleiotropy; Epistasis; Penetrance and expressivity; Phenocopy; Polygenic inheritance, Pleiotropism, Modifier/Modifying genes. Linkage & Crossing over: Chromosome theory of Linkage, kinds of linkage, linkage groups, Sutton's view on linkage, Morgan's view on linkage, types of Crossing over, mechanism of Meiotic Crossing over, theories about the mechanism of Crossing over.	
Unit III: Non- Mendelian Genetics	13 hrs
I ntroduction to Genomic imprinting, maternal effects, extra nuclear inheritance in mitochondria and chloroplast. Kappa articles in Paramoecium, Sigma factor in <i>Drosophila</i> , Cytoplamic Male Sterility (CMS) in maize maternal inheritance Sex determination, Dosage compensation with reference to X-inactivation in man, sex-linked, sex limited, sex influenced traits. Manifesting hetrozygotes, mosaics, chimeras, hermaphrodites.	
Unit IV: Gene Mapping	14 hrs

Use of sexual process in bacteria and bacteriophages in genetic mapping, Determination of linkage groups, determination of map distance, determination of gene order, cytological mapping. Hardy-Weinberg principle and effect of selection, mutation, migration and genetic drift on Hardy-Weinberg equilibrium.

List of Experiments -with basic instructions

1.To test PTC tasting ability in a random sample and calculate gene frequencies for the taster and non-taster alleles,

- 2. To test for colour blindness using Ishihara charts
- 3. To study finger ball and palmar dermatoglyphics and calculate indices.
- 4. Human morphogenetic traits.

Course Learning Outcomes:

- 1. Understand basic genetics.
- 2. Gain knowledge about Mendelian principles and various exceptions to it.
- 3. Understanding how sex of an organism has an impact on various diseases.
- 4. Perceive knowledge of gene and chromosome mapping.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Gardner EJ, Simmons MJ, Snustad DP	Principles of Genetics	Wiley-India	6 th /2008	978- 0471291312	480
Snustad DP, Simmons MJ	Principles of Genetics	John Wiley and Sons Inc.	6 th /2011	978- 0470388259 0470388250	800
Griffith AJF, Wessler SR, Lewontin RC, Carroll SB	Introduction to Genetic Analysis	W. H. Freeman and Co., New York	2007	978- 0716768876 0716768879	800
Strickberger , M.W	Genetics	Prentice-Hall India Pvt. Ltd., New Delhi	1999	8120309499 978- 8120309494	694
Tamarin R.H	Principles of Genetics	Tata McGrawHill, New York	2012	0072325305	862

PHY213: Fundamentals of Physics

L	Т	Р	TOTAL CREDIT
			UNITS
2	0	1	3

Course Objectives:

Aim of this course is to introduce the students about fundamentals of graduate level Physics, which forms the basis of all Applied Science specifically physical optics and related applications

Course Contents/Syllabus:

	Total
	Hrs
Unit I: Interference	9 hrs
Huygen's wave theory, Superposition principle, Conditions for sustained interference, Interference by division of Wavefront - Young's double slit experiment, Interference in thin parallel and wedge-shaped films, Newton's rings	
Unit II: Diffraction	9 hrs
Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at a Single Slit, and N Slits, Plane Transmission grating, Rayleigh criterion and Resolving power and dispersive power of grating.	
Unit III: Polarization	9 hrs
Polarization of Light, Law of Malus, Brewster's Law, Birefringence, Nicol prism, Production and Analysis of Plane, Circularly and Elliptically Polarized Light, Half and Quarter Wave Plates, Optical and Specific Rotation, Laurent half shade and Bi-quartz polarimeter.	
Unit IV: Lasers	9 hrs
Introduction of Lasers, Induced Absorption, Spontaneous and Stimulated Emission, Einstein Coefficients, Population inversion, Fundamental of Lasers, Types of Pumpin Concept of Three and Four Level Lasers, Construction and Working Lasers	

List of Experiments

- 1. To determine the wavelength of sodium light by Newtons's rings method
- 2. To determine the angle of prism with the help of a spectrometer
- 3. To determine the dispersive power of the material of prism with the help of a spectrometer
- 4. To determine the specific rotation of sugar by Bi-quartz or Laurent half shade polarimeter
- 5. To determine the width of a narrow slit using diffraction phenomena
- 6. To determine the wavelength of a laser using diffraction grating
- 7. To determine the wavelength of sodium source using Michelson's interferometer
- 8. To determine the attenuation, numerical aperture and acceptance angle of the given optical fiber

Course Learning Outcomes:

1. Understand the fundamental principles underlying wave phenomena related to interference.

- 2. Understanding the phenomenon of diffraction and its effects
- 3. Understand importance and working of polarization technique, linear and circular polarization and applications
- 4. Understanding on the properties of laser and construction with its applications in various fields

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
Halliday, Resnick and Walker	Fundamentals of Physics	Wiley India Pvt Ltd	2006	978- 8126514427	
Brijlal, Subramanyam & N Subrahmanyam	Principle of Optics	S. Chand publishing, 25th edition, 2012	2006	978- 8121926119	
Ghatak, Ajay	Optics	Tata McGraw- Hill	4th Edition	9789339220907	
Jenkins F A, White H E	Fundamentals of optics	Mcgraw hill	4th Edition	9780072561913	

MBO102: General Microbiology

L	Т	Р	Total Credits
3	0	1	4

Objectives: After studying this course, the students will be able to understand the basic concepts in microbiology and will gain knowledge about diversity of microorganisms and their structural organisation characteristics. It will also help students to understand the growth requirements of different microbes and methods of sterilization and imaging.

Course content and syllabus

	Teaching
	Hours
Unit I: History of Microbiology and Microbial Diversity	13 hrs
Discovery of microorganisms, contributions of prominent scientists in microbiology, spontaneous generation v/s Biogenesis, discovery of antibiotics. Physiological diversity, microbial classification (prokaryotes: Bacteria and Archaea, eukaryotes: Fungi, Algae, Protozoa, Helminthes) Binomial nomenclature, Whittaker's and Carl Woese's classification.	
Unit II: Cell organization	14 hrs
Cell size, shape and arrangement, glycocalyx, capsule, flagella, endoflagella, fimbriae and pili. Cell-wall: Composition and detailed structure of Gram-positive and Gram-negative cell walls, Archaebacterial cell wall, Gram and acid-fast staining mechanisms, lipopolysaccharide (LPS), spheroplasts, protoplasts, and L-forms. Effect of antibiotics and enzymes on the cell wall. Cell Membrane: Structure, function and chemical composition of bacterial, archaeal and eubacterial cell membranes. Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid, chromosome and plasmids Endospore: Structure, formation, stages of sporulation.	
Unit III: Microbial Nutrition, Growth and control	14 hrs
Nutritional requirements (macro and micronutrients), Temperature, pH, osmotic pressure, Types of culture media, uptake of nutrients, Maintenance of pure cultures. Microbial growth: Growth curve, Generation time, measurement of growth and factors affecting growth of bacteria. Methods in Microbiology: Microbial culture media, enrichment culture techniques, Pure culture techniques: Streaking, serial dilution and plating methods; cultivation, maintenance and preservation/stocking of pure cultures.	
Unit IV: Sterilization, disinfection and microscopy	13 hrs
Sterilization and disinfection- Definitions, Principles. Methods of sterilization- Physical methods (Heat, Filtration), Radiation and Chemical methods. Control of sterilization and Testing of sterility. Microscopy – Principles, Light microscope, Phase Contrast, Dark field, Bright field, Fluorescent, Interference microscope (Stereo microscope), Confocal, Inverted microscope, and Electron microscope (TEM and SEM).	
Measurement of Microorganisms- Micrometry. Staining- Simple, Gram	
--	--
staining, Negative staining, Capsule staining, Spore staining, Flagellar	
staining, nuclear staining and Acid-fast staining.	

List of Experiments -with basic instructions

- 1. Microbiology-Good Laboratory Practices and Bio-safety.
- 2. To study the principle and applications of important instruments (biological safety cabinets, autoclave, incubator, hot air oven, light microscope, pH meter) used in the microbiology laboratory.
- 3. Preparation of culture media for bacterial cultivation.
- 4. Sterilization of medium and glassware using Autoclave and Hot air oven, respectively and assessment for sterility.
- 5. Demonstration of the presence of microflora in the environment (soil/water/air). Course Learning Outcomes:
- 1. Understand the microbial diversity and contributions made by prominent scientists in microbiology.
- 2. Understand the cellular organization of microbes and different methods of staining.
- 3. Compare different nutritional requirements of microbes and methods of culturing.
- 4. Identify different method of sterilization and imaging.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Pelczar, M.J. Jr., Chan ECS and Krieg, N.R.	Microbiology: Concepts and Applications	New York; Madrid: McGraw-Hill,	1993	0070492581, 978007049258 5	957
Cappucino, J.G.	Microbiology-A laboratory manual, 4th ed., Harlow, Edition Wesley	Hoboken, N.J.: Pearson	2020	0135188997, 978013520399 6, 0135203996	541
Tortora GJ, Funke BR and Case CL	Microbiology: An Introduction. 9th edition	Pearson Education	2008	0805347917	912
Madigan MT, Martinko JM, Dunlap PV and Clark DP.	Brock Biology of Microorganisms	Pearson International Edition.	2014	978129201831 7	1030
Prescott, Harley and Klein's	Microbiology.9th Edition	McGraw Hill Higher education.	2013	978-0073402406	2272

MAT114: Statistics for Biosciences

L	Т	Р	TOTAL CREDIT UNITS
3	0	0	3

Course Objectives: Develop proficiency in statistical analysis methods, including data collection, descriptive statistics, correlation, regression, probability distributions, and hypothesis testing, to interpret and analyze real-world data effectively.

	Teaching Hours
Unit I:	
Data collection and graphical presentation, Descriptive Statistics: Measures of central tendency-Arithmetic, geometric and harmonic mean, median, and mode.	13 H
Unit II:	
Measures of dispersion, Skewness and Kurtosis, Simple and multiple correlation coefficient, partial correlation, rank correlation, Simple and multiple linear regression model, Coefficient of determination.	13 H
Unit III:	
Random Variable: Expectation and Variance, Discrete distributions: Uniform, Bernoulli, Binomial, Poisson, Continuous distributions: Uniform and Normal distribution	14 H
Unit IV:	
Testing of Hypothesis: Tests of significance based on Normal, ch square, t, and F distributions.	14 H

Course Learning Outcomes: On the successful completion of this course,

- 1. Students will understand the concept of data collection, representation, and measures of central tendency
- 2. Students will be able to apply the concept of dispersion, skewness, correlation, and regression of the given data
- 3. Students will be having knowledge of probability and random variables.
- 4. Students will be able to apply the significance based on testing of hypothesis.

AUTHOR	TITLE	Publisher	Year of	ISBN
			publication	

Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying E. Ye	Probability and Statistics for Engineers and Scientists	Pearson; 9th edition	2010	978- 0321629 111
G Shanker Rao	Probability and Statistics for Science and Engineering	Universities Press	2011	9788173 717444
SC Gupta, VK Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons Private Limited	2000	9788180 545283

ENV106: Environmental Studies-II

L	Т	Р	Total Credits
2	0	0	2

Course content and syllabus

	Teaching Hours
Unit I: Environmental Pollution	9 hrs
<i>Environmental Pollution</i> : types, Cause, effects and controls –Air, water, soil, chemical andnoise pollution. Nuclear hazard and human health risk Solid waste Management-control measures of urban and industrial waste.Pollution case studies.	
Unit II: Environmental Policies and Practices	9 hrs
Environmental Policies and practices: Climate change, global warming, ozone layer depletion, acid rain and impacts on humar communities and agriculture. Environment laws: Environment Protection Act; Air (Prevention and Control of Pollution) Act; Water (Prevention and Control of Pollution) Act; Wildlife Protection Act; Fores Conservation Act, international agreements: Montreal and Kyoto protocols and convention on biological diversity(CBD), The Chemical Weapons Convention (CWC). Natural reserves, tribal population and rights and Human-wildlife conflict in Indiar context.) t
Unit III: Human communities and the environment	9 hrs
Impacts on environment, human health and welfare.Carbon foot-print. Resettlements and rehabilitation of project affected persons, case studies.Disaster management: floods, earthquake, cyclone and landslides. Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation.	
Environmental communication and public awareness, case studies (e.g., CNG vehicles inDelhi).	
Unit IV: Field Work	9 hrs
Visit to an area to document environmental assets: river/forest/flora/fauna, etc. Visit to local polluted Site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, birds and basic principles of identification. Study of simple ecosystems-pond, river, Delhi Ridge, etc	

Course Learning Outcomes:

- Understanding the types of pollution and their impact on environment and human health.
- Understand the environmental concerns and their impact on humans and agriculture.
- Able to analyse the impacts of natural and manmade disaster on human population and settlements.
- Sensitization about the environmental issues and concerns leading to proactive actions to improve the environmental conditions in our daily life.
- Able to imbibe practical approach and solution to solve environmental concerns.

Author	Title	Publisher	Ed/ye	ISBN No	Pages
			ar		
William P. Cunningham,	Principles of	McGraw-Hill	2019	978126021 9715	664
Mary Ann Cunningnam	Environmental Science			5715	
William P. Cunningham,	Environmental	McGraw-Hill	2021	978126036	1280
Mary Ann Cunningham,	Science: A global			3821	
Barbara woodworth Saigo	concern				

PSY106: INDIVIDUAL, SOCIETY AND NATION

L	т	P/S	W/FW/ PSDA	TOTAL CREDIT UNITS
1	0	0	0	1

Course Contents/syllabus:

	No. of Session
Unit-1- Individual differences & Personality	4.5 H
Personality: Definition& Relevance	
Importance of nature & nurture in PersonalityDevelopment	
Importance and Recognition of Individual differences in Personality	
Accepting and Managing Individual differences Intuition, Judgment, Perception & Sensation (MBTI)BIG5 Factors	
Unit-2- Managing Diversity	4.5 H
Defining Diversity	
Affirmation Action and Managing Diversity	
Increasing Diversity in Work Force	
Barriers and Challenges in Managing Diversity	
Unit-3- Socialization, Patriotism and National Pride	4.5 H
Nature of Socialization	
Social Interaction	
Interaction of Socialization Process	
Contributions to Society and Nation	
Sense of pride and patriotism	
Importance of discipline and hard work	
Integrity and accountability	
Unit-4- Human Rights, Values and Ethics	4.5 H
Meaning and Importance of human rights	
Human rights awareness	
Values and Ethics- Learning based on project work on Scriptures like-	
Ramayana, Mahabharata, Gita etc.	

List of Professional Skill Development Activities (PSDA):

- Project on Understanding DiversityTerm Paper on Patriotism among Youth

Course Learning Outcomes: On completion of the course:

- To recognize individual differences
 To mange individual differences
- □ To develop patriotic feelings
- □ To recognized their self in relation to society & nation

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
Department of English, Univer sity of Delhi	The Individual& Society	Pearson Education	2010	978- 8131704172	266
Umang Malhotra	Individual, Society, and the World	iUniverse	2004	978- 0595662401	188
Tonja R. Conerly &	Introduction to Sociology3e	Openstax	2015	978171149397 8	458
Kathleen Holmes					
Daksh Tyagi	"A Nation of Idiots"	Every Protest	2019	978- 8194275015	350

FOL103: French Grammar

L	Т	Р	Total Credits
1	0	0	1

Course content and syllabus

	Teaching Hours
Unit I: My family and my house	4.5 hrs
Talk about your family members	
I leade of possessive adjectives	
Describe your house/apartment	
Prepositions of location	
Negation	
Unit II: Lifestyle	4.5 hrs
Talk about your bobbies and pastimes	
I Isage of appropriate articles : definite and contracted	
Talk about your daily routine	
Usage of pronominal verbs	
Unit III: In the city	4.5 hrs
Ack for personal information	
Ask for personal information Usage of interrogative adjectives	
Give directions about a place	
Ordinal numbers	
Usage of demonstrative adjectives	
Unit IV: Week-end	4.5 hrs
Talk about your week-end plans	
Usage of disjunctive pronouns	
Usage of Near Future tense	
Talk about weather	
Write a simple post card	

<u>Course Learning Outcomes</u>: At the end of this course, the students will be able to interact in a simple wayon everyday topics. This course content focuses on the speech of the students in a lucid and a concurrent manner using appropriate vocabulary and pronunciation techniques. Extra stress will be given on their understanding of grammatical structures and

the foreign accent of the language. At the end of the course, the student shall be able to:

Course learning outcomes-

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- □ Apply information in a new way in a practical context
- □ Analyze and break-down information to create new ideas
- Evaluate and express opinion in a given context

Author	Title	Publisher	Ed/ye	ISBN No	Pag
			ar		es
Christine Andant, Catherine Metton, Annabelle Nachon, Fabienne Nugue	A Propos - A1, Livre de l'élève et Cahier d'exercices.	Langers InternationalPvt. Ltd.	2010	978- 9380809069	
Collins Dictionaries	Easy Learning French Complete Grammar Verbs and Vocabulary	Collins ,	2016	978- 0008141721	
Nikita Desai, Samapita Dey Sarkar	Apprenons La Grammaire Ensemble - French	Langers InternationalPvt. Ltd.	2017	978- 8193002681	

FOL104: German Grammar

L	Т	Р	Total Credits
1	0	0	1

Course content and syllabus

	Teaching Hours
Unit I: Time (Uhrzeit); People and the World: Land, Nationalität und Sprache	4.5 hrs
Introduction of time	
Read text related to time and teach the students the time expressions	
Exercises related to Time	
Adverbs of time and time related prepositions	
Vocabulary: Countries, Nationalities, and their languages	
Negation: "nicht/ kein"	
Ja/Nein Fragen.	
All the colors and color related vocabulary, adjectives, and opposites	
Exercises and comprehension for the same	4.5.1
Unit II: Irregular verbs (unregelmassige Verben)	4.5 hrs
Introduction to irregular verbs and their conjugation e.g. fahren, essen, lesen etc	
Read a text related to the eating habits of Germans	
Vocabulary: Obst, Gemüse, Kleiderstück with usage of irregular verbs	
Free time and hobbies	
Food and drinks	
Unit III: Accusative case: articles and pronouns (Akkusativ Kasus: Artikel und Pronomen)	4.5 hrs
Introduction to the concept of object (Akkusativ)	
Formation of sentences along with the translation and difference between	
nominative and accusative articles	
Usage of accusative Definite articles	
Usage of accusative Indefinite articles	
Unit IV: Accusative case: possessive pronouns (Akkusativ Kasus:	4.5 hrs
Possessivpronomen)Family and Relationship	
Accusative Personal Pronouns: - Revision of the nominative personal pronouns and	
introduction of accusative. Applicability of pronouns for both persons and things.	
Usage of accusative Personal Pronouns	
Introduction of accusative possessive pronouns	
Difference between nominative and accusative possessive pronouns	
usage of accusative possessive pronouns	

<u>Course Learning Outcomes:</u> After completing these modules, the students will be capable of constructing sentences with possessive and demonstrative adjectives in German. In

addition, they will be proficient informulating meaningful sentences as they will be capable of applying their knowledge of all the irregular verbs they have learnt during the session. They will also have an idea of German culture by studying about various German festivals.

Course learning outcomes-

At the end of the course, the student shall be able to:

- Understand information; Express in his own words; Paraphrase; Interpret and translate.
- □ Apply information in a new way in a practical context
- □ Analyse and break-down information to create new ideas
- Evaluate and express opinion in a given context

Text / Reference Books: [mention the name of the books. Can add more rows]

Author	Title	Publisher	Ed/ye	ISBN No	Pag
			ar		es
Dora Schulz, Heinz Griesbach	Deutsche Sprachlehre Fur Auslander	Max Hueber Verlag	1984	978- 3190010066	
Hartmut Aufderstrasse, Jutta Muller, Helmut Muller	Themen Aktuell: Glossar Deutsch	Max Hueber Verlag	2003	978- 3190816903	
Giorgio Motta	Wir Plus Grundkurs Deutsch fur Junge Lerner Book German Guide	Goyal Publishers	2011		248

INL104: Punjabi Language and Literature

L	Т	Р	Total Credits
1	0	0	1

Course content and syllabus

	Teaching Hours
Unit I:	4 hours
ਆਧੁਨਿਕ ਪੰਜਾਬੀ ਕਹਾਣੀ ਦਾ ਅਧਿਐਨ (ਕਥਾ ਕਹਾਣੀ)	
ਕਹਾਣੀ ਵਿਸ਼ਾ-ਵਸਤੂ/ਸਾਰ,ਪਾਤਰ-ਚਿਤਰਨ	
ਕਹਾਣੀਕਾਰ ਦੇ ਜੀਵਨ ਅਤੇ ਰਚਨਾ ਬਾਰੇ ਮੁੱਢਲੀ ਜਾਣਕਾਰੀ	
Unit II:	4 hours
ਦਫ਼ਤਰੀ ਚਿੱਠੀ-ਪੱਤਰ ਰਚਨਾ	
ਚਿੱਠੀ-ਪੱਤਰ ਲੇਖਣ ਕਲਾ,ਮਹੱਤਤਾ ਅਤੇ ਕਿਸਮਾਂ	
ਦਫ਼ਤਰੀ ਚਿੱਠੀ-ਪੱਤਰ ਰਚਨਾ ਦੇ ਜ਼ਰੂਰੀ ਅੰਗ ਅਤੇ ਵੱਖ-ਵੱਖ ਵਿਸ਼ਿਆਂ ਅਨੁਸਾਰ ਵਿਹਾਰਕ ਅਭਿਆਸ	
Unit III:	5 hours
ਵਿਆਕਰਨ ਸਿਧਾਂਤ ਅਤੇ ਵਿਹਾਰ	
1. ਪੰਜਾਬੀ ਅਰਥ ਬੋਧ	
ਅਰਥਾਂ ਦੇ ਆਧਾਰ ਦੇ ਸ਼ਬਦਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਅਤੇ ਉਦਾਹਰਨਾਂ, ਸਮਾਨਰਥਕ ਸ਼ਬਦ,	
ਬਹੁਅਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ, ਬਹੁਤੇ ਸ਼ਬਦਾਂ ਦੇ ਸਥਾਨ ਤੇ ਇੱਕ ਸ਼ਬਦ	
ਮੁਹਾਵਰੇ, ਅਖਾਣ : ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਉਦਾਹਰਨਾਂ	
2. ਪੰਜਾਬੀ ਵਾਕ ਬੋਧ	
ਵਾਕ ਪ੍ਰੀਭਾਸ਼ਾ,ਵਾਕ ਦੇ ਤੱਤ, ਪੰਜਾਬੀ ਵਾਕ ਤਰਤੀਬ	
ਵਾਕ ਵਰਗੀਕਰਨ:ਕਾਰਜ ਦੇ ਅਧਾਰ ਤੇ ਵਾਕਾਂ ਦੀਆਂ ਕਿਸਮਾਂ,	
ਬਣਤਰ ਦੇ ਅਧਾਰ ਤੇ ਵਾਕਾਂ ਦੀਆਂ ਕਿਸਮਾਂ	
Unit IV:	5 hours
ਵਿਆਕਰਨ ਸਿਧਾਂਤ ਅਤੇ ਵਿਹਾਰ	
1. ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਤੇ ਗੁਰਮੁਖੀ ਲਿੱਪੀ	
2. ਭਾਸ਼ਾ, ਉਪਭਾਸ਼ਾ,ਟਕਸਾਲੀ ਭਾਸ਼ਾ ਅਤੇ ਪੰਜਾਬੀ ਦੀਆਂ ਉਪਭਾਸ਼ਾਵਾਂ	

Course Learning Outcomes:

- •
- •
- Understand modern Punjabi Stories. Interpret the importance of letter writing Analyze the Punjabi language structure and grammar. •

AUTHOR	TITLE	Publisher	Year of	ISBN	Pages
ਡਾ. ਧਨਵੰਤ ਕੈਰ	ਕਥਾ ਕਹਾਣੀ	ਪਬਲੀਕੇਸਨ ਬਿੳਰੋ.	2009	-	-
(มีนา)		ੁੱ ਪੰਜਾਬ ਯੂਨੀਵਰਸਿਟੀ			
(****),		ਜੀ ਤੋਂ ਤੂੰਨਾ ਦਰਸਾਰ ਜੰਤੀਸ਼ਤ			
ਸਿੰਦਰ ਸਿੰਘ	ਮੰਜਾਈ ਗਾਸ	ਪਤਾਸੀਰੇਸ਼ਸ਼	2015	_	_
	ਧਜਾਬਾ ਭਾਸ਼ਾ		2013	-	-
ਥਾਹਰਾ (ਸਧਾ.),	IEM'ADO MJ	ାଧ୍ୟତୁਰ,ଧନାଧ୍ୟା 			
	ਬਣਤਰ	ਯੂਨਾਵਰਸਟਾ			
		ਪਟਿਆਲਾ			
ਤਾ ਹਰਕੀਰਤ	ਕਾਲਰ ਮੰਗਾਈ	ਮੰਗਾਬ ਬਟੇਟ	1000		_
5.009105	ਕਾਲਜ ਪਜਾਬ ਤਿਆਜਾਜ਼ ਅਜੇ	ਪਜਾਬ ਸਟਟ	1333	-	-
ामय,	IEM'400 M3	ਯੂਨਾਵਰਸਟਾ ਟਕਸਟ			
	ਲਥ ਰਚਨਾ	ਖੁਕ ਖਰਡ,ਚੰਡਗਿੜ੍ਹ			
ਤਾ)ੇਮ ਮੁਕਾਸ	ਰਾਲਜ ਮੰਜਾਬੀ	ਮਦਾਨ ਪ੍ਰਸ਼ਲੀਰੇਸ਼ਨਜ਼	2002	-	-
רביין אין אין אין הייי	ਵਿਆਕਰਨ ਅਤੇ		2002		
174	ਵਿਆਕਰਨ ਅਤ	410.4.0.			
 	ଜୟ ପ ୍ଟର'	<u> </u>	0010		
ਡਾ. ਬੂਟਾ ਸਿਘ	ਪਜਾਬ	ਚਤਨਾ ਪ੍ਰਕਾਸ਼ਨ,	2012	-	-
ਬਰਾੜ	ਵਿਆਕਰਨ	ਪਜਾਬ			
	ਸਿਧਾਂਤ ਅਤੇ	ਭਵਨ,ਲੁਧਿਆਣਾ			
	ਵਿਹਾਰ				
ਡਾ. ਬੂਟਾ ਸਿੰਘ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	, ਵਾਰਿਸ ਸ਼ਾਹ	2012	-	-
ਬਰਾੜ	ਸ੍ਰੋਤ ਅਤੇ ਸਰੂਪ	ਫ਼ਾਊਂਡੇਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ			
ਦੁਨੀ ਚੰਦ੍ਰ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	, ਪੰਜਾਬ ਯੂਨੀਵਰਸਿਟੀ	1995	-	-
	ਦਾ ਵਿਆਕਰਣ	ਪਬਲੀਕੇਸ਼ਨ ਬਿਊਰੋ,			
		 ਚੰਡੀਗੜ			
		- 0			
ਜੋਗਿੰਦਰ ਸਿੰਘ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	2003	-	-
ਪੁਆਰ ਅਤੇ ਹੋਰ	ਦਾ ਵਿਆਕਰਨ	ਅਕਾਦਮੀ ਜਲੰਧਰ			
	(ਭਾਗ 1,2,3),				
ਸੁਖਵਿੰਦਰ ਸਿੰਘ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	ਪੰਜਾਬੀ ਭਾਸ਼ਾ	2010		-
ਸੰਘਾ	ਵਿਗਿਆਨ	ਅਕਾਦਮੀ ਜਲੰਧਰ			

ਅਗਨੀਹੋਤਰੀ,ਵੇਦ	ਪਰਿਚਾਇਕ	ਦੀਪਕ ਪਬਲਿਸ਼ਰਜ਼	1981	-	-
	ਭਾਸ਼ਾ ਵਿਗਿਆਨ	ਜਲੰਧਰ			

INL106: History and Culture of Punjab

	L	Т	P/S	SW/FW	Total Credit Units
Course Contents/syllabus:	1	0	0	0	1

	Weightage
Unit I:	4.5 H
Introduction of Colonial Rule in Punjab: Annexation of Punjab; Board of Administration.	
Western Education: Growth of Education and rise of middle classes. Agrarian Development: Commercialization of agriculture; canalization and colonization.	
Unit II:	4.5 H
Early Socio Religious Reform: Christian Missionaries; Namdharis; Nirankaris. Socio Religious Reform Movements: activities of Arya Samaj; Singh sabhas; Ahmadiyas; Ad Dharam Movement. Development of Press & literature: growth of print technology; development inliterature	
Unit III:	4.5 H
Emergence of Political Consciousness: Gadar Movement; Jallianwala Bagh Massacre. Gurudwara Reform Movement; major Morchas; Activities of Babbar Akalis.	
Struggle for Freedom: Non-Cooperation Movement; HSRA and Bhagat Singh; Civil Disobedience Movement; Quit India Movement.	
Unit IV:	4.5 H
Partition and its Aftermath: resettlement; rehabilitation. Post-Independence Punjab: Linguistic Reorganization; Green Revolution.	

Course Learning Outcomes:

- Understand the history of Punjab region in modern times.
- □ Interpret the importance early socio religious reform, movements, developments.
- Examine the contribution of major reform movements: Gadar, Babbar Akalis and Gurdwara reformmorchas.
- Examine the impact of Partition of Punjab and major changes in Punjab after independence.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Singh, Kirpal	History and Culture of the Punjab, Part II (Medieval Period)	Publication Bureau, Punjabi University, Patiala	1990(3rd ed.).		
Singh, Fauja(ed.)	History of the Punjab, Vol.III	Punjabi University, Patiala	1972		
Grewal, J.S.	The Sikhs of the Punjab , the New Cambridge History of India	Orient Longman	1990		
Singh, Khushwant	: A History of the Sikhs, vol I: 1469-1839	oxford University Press, Delhi	1991		
Chopra, P.N., Puri, B.N .	A Social, Cultural and Economic History of India, Vol.II, And Das	M.N. Macmillan , Delhi	1974		

Programme structure for B.Sc. (H) Biochemistry (3 Years) (3rd Semester)

Sr.No	Course Code	Course Title	Course Type	CreditUnits			
				L	Т	PS	Total Credits
1	BTY201	Biotechniques	Major Core Course	3	0	1	4
2	BCH201	Enzymology	Minor Course	3	0	1	4
3		Protein Biochemistry	Major Core Course	3	0	1	4
4	BTY202	Protein Science	Skill Enhancement Course	3	0	0	3
5		Programming with R	Skill Enhancement Course	2	0	1	3
6	ENG104	Communication Skills -I	Ability Enhancement Coiurse	2	0	0	2
B	-	Total Credits	-	•	•	-	20

(Courses under MC can be floated through MOOC.)

BTY201-Biotechniques

L	Т	Р	Total Credits
3	0	1	4

Objective: This course will provide students with the understanding of various analytical techniques used in biology/biotechnology-based research and industry. The course will acquaint the students with the various instruments, their configuration and principle of working, operating procedures, data generation and its analysis.

Course content and syllabus:

	Teaching Hours
Unit I: Introduction to chromatographic techniques	13 hrs
Introduction to chromatographic separations, Principles and applications of paper, thin layer, column: adsorption ion-exchange, affinity, gel permeation, normal phase and reverse phase chromatography, gas chromatography, High performance liquid chromatography (HPLC).	
Unit II: Spectroscopic and centrifugation techniques	14 hrs
Principles and applications of UV-Visible, Infrared, Raman, Nuclear magnetic resonance, Fluorescence, Atomic absorption spectroscopy, X-ray diffraction, mass spectroscopy, Introduction to centrifugation, basic principles of sedimentation, types of centrifugation.	
Unit III: Electrophoretic techniques	13 hrs
Theoretical basis of electrophoretic separations, electrophoretic mobility, free and zone electrophoresis: moving boundary electrophoresis, paper, polyacrylamide gel (native and SDS-PAGE), pulse-field gel electrophoresis, isoelectric focusing.	
Unit IV: Microscopy	14 hrs
Principles and applications of Simple microscopy, phase contrast microscopy, fluorescence, and electron microscopy(Transmission and Scanning).	

List of Experiments:

- 1. To verify the validity of Beer's law and determine the molar extinction coefficient of KMNO₄
- 2. Separation of amino acids by paper chromatography
- 3. Plant pigment Separation by paper/thin layer chromatography
- 4. Demonstration of HPLC instrument
- 5. Demonstration of working of centrifuge for preparative and density gradient centrifugation.

Course Learning Outcomes:

Students will be able to

- 1. apply basic principles of different analytical techniques in analytical work.
- 2. use spectroscopy and chromatography in biotechnological applications.
- 3. use microscopy, centrifugation, and electrophoretic techniques.
- 4. demonstrate principle and working of various instruments.
- 5. use various techniques for solving industrial and research problems.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Karp, Gerald	Cell and Molecular Biology: Concepts andExperiments	John Wiley andSons, Inc	6 th edition/2010	1118886143	832
Wilson K., Walker J.	Principle and Techniques of Biochemistry and Molecular Biology	Cambridge University Press	6th edition/2006	0521178746	744
Rana, SVS	Biotechniques: Theoryand Practice	Rastogi Publications	2018	8171338860	388
Plummer, David	An Introduction to Practical Biochemistry	Tata Mc Graw Hills	3rd edition/2017	0070941629	376

Protein Biochemistry

L	Т	Р	TOTAL CREDIT UNITS
3	0	1	4

	Teaching Hours
Unit I: Proteins	14 hrs
Proteins: Non-covalent interactions stabilizing protein structure. Levinthal paradox, Protein folding: free energy tunnel theory, Molecular chaperon in protein folding. Native proteins and their conformation. Protein misfolding: Prions disease and other misfolding disease, Behaviour of proteins in solutions. Salting in & salting out of proteins. Denaturation of proteins. Purification of proteins and criteria of protein purity. Protein cleavage using chemicals and enzymes.	
Unit II: Specialized proteins	13 hrs
Structure and biological functions of globular proteins (hemoglobin, types of Hb, myoglobin) and fibrous proteins (collagen, keratin and silk fibroin), sickle cell hemoglobin. Conjugated proteins. Lectins and their biological functions. Metalloproteins, immunoglobullins, glycoproteins.	
Unit III: Overview of Amino Acid Metabolism	14 hrs
Nitrogen cycle, incorporation of ammonia into biomolecules. Digestion and absorption of dietary proteins. Protein calorie malnutrition - Kwashiorkar and Marasmus. Nitrogen balance, glucose-alanine cycle, Comparative Biochemistry of Nitrogen excretion. Urea cycle and inherited defects of the urea cycle. General reactions of amino acids: transamination, the role of pyridoxal phosphate, SGOT, and SGPT and their clinical significance. Deamination and decarboxylation reactions.	
Unit IV: Proteins	13 hrs
Glucogenic and ketogenic amino acids. Catabolism of Essential amino acids. Metabolism of one carbon unit (tetrahydrofolate cofactors), Catabolism of Essential amino acids. Disorders of amino acids metabolism, phenylketonuria, alkaptonuria, maple syrup urine disease, methylmalonic academia (MMA), homocystinuria and Hartnup's disease	

List of Practicals with basic instructions

- 2. Absorption spectra of protein-BSA, nucleic acids- Calf thymus DNA and RNA.
- 3. Paper chromatography of amino acids.
- 4. Assay of serum transaminases- SGOT and SGPT.
- 5. Estimation of proteins by biuret method.
- 6. Estimation of proteins by Lowry's method.
- 7. Estimation of Serum total proteins and albumin-globulin Ratio.
- 8. Estimation of serum urea.
- 9. Protein estimation by Bradford method.

Course Learning Outcomes:

• Understand the structure of proteins their physical and chemical properties, estimation separation, and estimations in biological samples

- Learning about advanced protein structures, functions, and their roles in various biological processes and diseases.
- Enhanced learning on nitrogen metabolism, protein digestion, related clinical implications, and biochemical pathways involving amino acid
- To understand amino acid metabolism pathways and revelation of the genetic and biochemical basis of related disorders.

Author	Title	Publisher	Ed/year	ISBN No	Page
					S
Wilson K., Walker J.	Principle and Techniques of Biochemistry and Molecular Biology	Cambridge University Press	6 th edition /2006	978- 0521178747	744
Plummer, David	An Introduction to Practical Biochemistry	Tata Mc GrawHills	3 rd edition /2017	978- 0070994874	250
Boyer, Rodney F	Concepts in biochemistry	John Wiley & Sons	2002	97804700037 94	626
Donald, V. and Judith G.V.,	Biochemistry	4 th ed. Wiley	2010	978- 0470570951	1428
Lubert Stryer	Biochemistry.	9 th ed. W.F. Freeman and Co	2019	978- 1319114671	1296

BCH201: Enzymology

L	Т	Р	Total Credits
3	0	1	4

58

Objectives- For a course in enzymology, the laboratory component focuses on hands-on experimentation with enzyme assays, purification techniques, and kinetic studies to reinforce theoretical concepts. Students gain practical skills in enzyme characterization, measurement of enzyme activity, and data analysis, enhancing their understanding of enzymatic processes. The theoretical aspect covers enzyme structure, function, kinetics, regulation, and applications in biotechnology, providing a foundational knowledge of enzymology's principles and significance in biochemical research and industry.

Course content and syllabus:

	Teaching Hours
Unit I: Enzymes and Coenzymes	9 hrs
Nature of enzymes - protein and non-protein (ribozyme). Cofactor and prosthetic group, apoenzyme, holoenzyme. IUBMB classification of enzymes. Features of enzyme catalysisFactors affecting the rate of chemical reactions, collision theory, activation energy and transition state theory, catalysis, reaction rates and thermodynamics of reaction. Catalyticpower and specificity of enzymes (concept of active site), Koshland's induced fit hypothesis. Involvement of coenzymes in enzyme catalysed reactions: Mechanism of action of TPP, FAD, NAD, pyridoxal phosphate, biotin, coenzyme A, tetrahydrofolate, lipoic acid.	
Unit II: Enzyme Kinetics and Inhibition	18 hrs
Relationship between initial velocity and substrate concentration, steady state kinetics, equilibrium constant – mono-substrate reactions. Michaelis-Menten equation, Lineweaver-Burk plot, Eadie-Hofstee and Hanes plot. Km and Vmax, Kcat and turnover number. Effect of pH, temperature and metal ions on the activity of enzyme. Bi-substrate reactions: Types of bi bi reactions (sequential – ordered and random, ping pong reactions). Enzyme inhibition: Reversible inhibition and irreversible (competitive, uncompetitive, noncompetitive, mixed type). Mechanism based inhibitors - antibiotics as inhibitors.	
Unit III: Mechanisms of Enzyme catalysed reactions	18 hrs
General features - proximity and orientation, strain and distortion, acid base and covalent catalysis (chymotrypsin, lysozyme). Metal activated enzymes and metalloenzymes, transition state analogues. Regulation of enzyme activity : Control of activities of enzymes (end product inhibition) and metabolic pathways, feedback inhibition (aspartate transcarbomoylase), reversible covalent modification (phosphorylation). Proteolytic cleavage- zymogen. Multienzyme complexes (pyruvate dehydrogenase, fatty acid synthase) and Enzyme regulation	
Unit IV: Application of Enzymes	9 hrs

Application of enzymes in diagnostics (SGPT, SGOT, creatine kinase, alkaline	
and acid phosphatases), enzyme immunoassay (HRPO), enzyme therapy	
(Streptokinase). Immobilized enzymes.	

Course Learning Outcomes:

At the end of the course, the students will -

- Recall the types of enzymes, their classification and their importance
- Explain enzyme kinetics and enzyme inhibitors
- Identify the mechanisms of enzyme action
- Classify the enzymes according to their application in diagnostics and drug discovery

List of Experiments -with basic instructions

- 1. Partial purification of acid phosphatase from germinating mung bean.
- 2. Assay of enzyme activity and specific activity, e.g. acid/alkaline phosphatase.
- 3. Effect of pH on enzyme activity
- 4. Effect of temperature on enzyme activity
- 5. Determination of Km and Vmax using Lineweaver-Burk plot

Author	Title	Publisher	Ed/year	ISBN No	Pages
David Nelson	Lehninger: Principles of Biochemistry	WH Freeman	2017	9781319108243	1328
Nicholas C.P. and Lewis S.	Fundamentals of Enzymology	Oxford University Press	3rd Ed	978-0198064398	322
Voet, D., Voet, J.G.	Biochemistry	Wiley	4th Ed	978-0071737074	245

BTY202: Protein Science

L	Т	Р	Total Credits
4	0	0	4

Objectives: After studying this course, the students will be able to understand the relationship between protein sequence, structure, and function. It will give them a broad overview of diseases caused by protein misfolding and methods to study and compare proteins.

Course content and syllabus:

	Teaching Hours
Unit I: Protein Structure	18 hrs
Peptide bond, protein secondary structure – fibrous and globular proteins, proteins stability, tertiary and quaternary structure, Protein Folding: Theory and Experiment, Folding Accessory Proteins, Protein Structure Prediction and Design, Protein Dynamics.	
Unit II: Protein misfolding, aggregation and denaturation	18 hrs
Protein misfolding and aggregation, amyloid formation. Conformational Diseases: Alzheimer's, Prion diseases, Huntington's disease, sickle cell anemia, Parkinsons. Structural Evolution Protein denaturation and folding, Chemical evolution, Chemical Synthesis of Polypeptides. IDP (Intrinsically disordered proteins).	
Unit III: Protein alignment and database research	18 hrs
Protein primary sequence analysis, DNA sequence analysis, pair wise sequence alignment, FASTA algorithm, BLAST, multiple sequence alignment, DATA base searching using BLAST and FASTA. Phylogenetic tree analysis	
Unit IV: Analysis of protein-protein interactions	18 hrs
Pull-down assay, Yeast two hybrid assay, Coimmunoprecipitation assay, Fluorescence resonance energy transfer (FRET). DNA- protein interactions, footprinting assay, EMSA.	

Course Learning Outcomes:

- 1. Understand basic concepts of protein structure.
- 2. Learn protein functions by ligand binding -enzymes and antibodies.
- 3. Compare protein sequences.
- 4. Protein-Protein/Protein-Nucleic Acid interaction.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Donald Voet, Judith G. Voet	Biochemistry, 4th Edition	John Wiley & Sons	2018	ISBN: 978-0-470- 57095-1	18 20
David L. Nelson andMichael M. Cox	Lehninger Principles of biochemistry, 8 th Edition	Macmillan	2021	ISBN:9781319322 328	1120
Thomas E. Creighton	Proteins: Structures and Molecular Properties	W. H. Freeman	1993	9780716770305	507

BIF: Programming with R

L	т	Р	Total Credits
3	0	0	3

<u>Objective</u>: The aim of this course is to teach students the fundamentals of R programming for its application in statistically oriented data analysis.

Course content and syllabus:

	Teach ing Hours
Unit I: Introduction to R	13 H
The R environment, softwares, R statistics, R window system, R help, R com	mands
Unit II: Objects, Arrays and matrices	14 H
Intrinsic attributes: mode and length, Factors: tapply() and ragged arrays, o factors, Arrays, Array indexing, Index matrices, The array () function, The product of two arrays, Generalized transpose of an array, The concate function, c(), with arrays	rdered outer enation
Unit III: Lists, Data frames and Reading data from files	13 H
Unit III: Lists, Data frames and Reading data from files Lists, Constructing and modifying lists, Data frames, Making data frames, W with data frames, Accessing built in datasets, Loading data from other R pace Editing data	/orking kages,
Unit III: Lists, Data frames and Reading data from files Lists, Constructing and modifying lists, Data frames, Making data frames, W with data frames, Accessing built in datasets, Loading data from other R pace Editing data Unit IV: Loops, Conditional operators and Functions	/orking kages, 14 H

Course Learning Outcomes: At the end of the course, the students will:

- 1. Learn R basics, including environment, software, statistics, and commands.
- 2. Master data attributes, factors, arrays, and related functions.
- 3. Acquire skills in working with lists, data frames, and data import.
- 4. Understand loops, conditionals, and function creation.

AUTHOR	TITLE	Publisher	Year of publication	ISBN
W. N. Venables, D. M. Smith and the R Core Team	An Introduction to R	R Core Team	2023	

ENG (104): Introduction to Communication Skills

L	Т	Р	Total credits
2	0	0	2

Objectives: To help students develop skills in the areas of vocabulary, grammar, presentation, and interactive communication so that any deficiencies in either skills or their application do not interfere with communication.

Prerequisites: Good Listening, Speaking, Reading, and Writing Skills.

Course Contents/syllabus:

	Teaching Hours
Unit I: Basic Concepts of Communication	9
 Definition, Nature and Role of Communication Communication Networks: Flow, Medium and Channel Barriers to Communication SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis 	
Unit II: Communication Types	9
 Introduction of Communication Skills (Listening, Speaking, Reading and Writing) Nonverbal Communication: Functions and Effective use KOPPACT (Kinesics, Oculesics, Proxemics, Paralanguage, Artifacts, Chronemics, Tactilics). 	
Unit III: Digital Literacy and Social Media	
 Importance of Digital Literacy Netiquette E-mail Etiquette Advantages/Disadvantages of social media Effective ways of using social media Blogs/Content writing Professional Profile on Web 	
Unit IV: Gateway to Industry	10
 Resume Writing Cover Letter Interview Skills LinkedIn Profile Writing LinkedIn Recommendations 	

Course Learning Outcomes:

• Students will be able to understand the basic processes of communication, both verbal as well as nonverbal—nature, scope, and power of communication processes.

- Students will be able to understand the different types and forms of communication and their functions, use, and significance.
- Students will be able to develop an understanding of the importance of digital literacy. They will also be able to develop an awareness of the role of social media in shaping public psyche, beliefs, and perceptions about social realities and build an informed and critical perspective.
- Students will be able to read and interpret complex messages and take decisions accordingly. They will also be able to improve their speaking skills and develop effective speaking strategies.

Texts/Reference books:

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
P. D. Chaturvedi and Mukesh Chaturvedi	Business Communication: Concepts, Cases and Applications	Pearson Education	2006	9788131701720	516
Herta A. Murphy, Herbert Hildebrandt, Jane Thomas	Effective Business Communication	Tata McGraw Hill Education	2008	9780070187757 9789353501051	444 628
Jeff Butterfield	Soft Skills for Everyone	Cengage Learning	2017		

Programme structure for B.Sc. (H) Biochemistry (3 Years) (4thSemester)

		Total Credits					22
5		Communication Skills -II	Ability Enhancement Course	2	0	0	2
4	BTY207	Recombinant DNA Technology	Skill Enhancement Course	3	0	1	4
3		Amino Acid & Nucleic Acid Metabolism	Major Core Course	4	0	2	6
2		Membrane Biology and Bioenergetics	Major Core Course	4	0	2	6
1	IMM202	Immunology	Minor Course	4	0	0	4
				L	Т	PS	Total Credits
Sr. No	Course Code	Course Title	Course Type	Cre	editU	Jnits	

(Courses under MC and SEC can be floated through MOOC.)

IMM202: Immunology

l		Т	Р	Total Credits
	4	0	0	4

Objective: The objective of this course is to provide students with detail understanding of different cells of the immune system and their role in immune protection as well as application of immunological techniques

Course content and syllabus

	Teaching Hours
Unit I: Introduction and Immune Cell Types	18 hrs
Immune system, Concept of Innate and Adaptive immunity, Hematopoietic stem cells, Lymphocytes & immune response (cytotoxic T-cell, helper T-cell, suppressor T-cells), Granulocytes and Monocytes, Cell participation in innate and adaptive Immunity	
Unit II: Antigens, Antibodies and Major Histocompatibility Complex	18 hrs
Characteristics of an antigen (Foreignness, Molecular size, and Heterogeneity), Haptens, Epitopes (T & B cell epitopes), T-dependent and T- independent antigens, Factors responsible for immunogenicity, Adjuvants, Super-antigens, Structure and function of antibody, Antibody classes, VDJ rearrangements, Monoclonal and chimeric antibodies, Major Histocompatibility: Structure and Functions of MHC I & II molecules, Antigen processing and presentation, Inflammatory response, Complement System	
Unit III: Generation of Immune Response and Vaccines	18 hrs
Primary and Secondary Immune Response, Generation of Humoral Immune Response (Plasma and Memory cells), Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Co- stimulatory signals), Killing Mechanisms by CTL and NK cells, Types of autoimmunity and hypersensitivity with examples, Immunodeficiencies - Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, tumor antigens, Vaccines: Active and passive immunization, Vaccine types (Live but attenuated, Killed, Subunit, Recombinant, DNA and Peptide)	
Unit IV: Immunological Techniques	18 hrs
Principles of Precipitation, Agglutination, Immunodiffusion, Immunoelectrophoresis, Immunoassays, ELISA, ELISPOT, Western blotting, Immunofluoresence, Flow cytometry, fluorescence activated cell sorting analysis, microarrays to assess gene expression	

Course Learning Outcomes:

- Students will be able to explain the role of immune cells and their role in body defense mechanism
- Students will be able to devise strategies to combat infection or diseases produced by altered self.
- Students will develop ability to use this knowledge in the processes of immunization, antibody engineering, vaccine development, transplantation, and diseases.

• Students will be able to demonstrate immunological techniques

Author	Title	Publisher	Ed/year	ISBN No	Pages
J. Owen, J. Punt, S. Stranford	Kuby Immunology (8 th Edition)	WH Freeman and Company,USA	2012	1319114709	944
D. Male, J. Brostoff, D. Roth, I. Roitt	Immunology (8 ^t b Edition)	Saunders, Elsevier, USA	2012	9780702045486	482

Amino Acid & Nucleic Acid Metabolism

L	Т	Р	TOTAL CREDIT UNITS
4	0	2	6

Course objectives: The course aims to provide a comprehensive understanding of amino acid and nucleic acid metabolism, elucidating the biosynthetic pathways and regulatory mechanisms involved. Students will explore the diverse roles of these molecules in cellular processes and organismal physiology, including their significance in energy metabolism, genetic information transfer, and cellular signaling.

Course content:

	Teaching Hours
Unit I: Biosynthesis of amino acids	18 hrs
Biosynthesis of non-essential and essential amino acids (Except aromatic amino acids). Regulation of amino acid biosynthesis	
Unit II: Biosynthesis of aromatic amino acids	18 hrs
Biosynthesis of aromatic amino acids. Biosynthesis and physiological roles of creatine and creatinine, Polyamines (putresine, spermine, spermidine), catecholamines (dopamine, epinephrine, norepinephrine) and neurotransmitters (serotonin, GABA), melanin, NAD+ and Auxin	
Unit III: Amino acid derivatives: biosynthesis and functions	18 hrs
Porphyrins: classification of porphyrins. Important porphyrins occurring in nature. Bile pigments-chemical nature and their physiological significance. Biosynthesis of heme. Metabolic defects associated with heme biosynthesis. Heme catabolism and various types of jaundices Nucleic acids: structure, supercoiled DNA, Viral DNA, plasmids, mi RNA and Sn RNA, Nucleoproteins	
Unit IV: Protein degradative pathways	18 hrs
Digestion of nucleic acids, degradation of purine and pyrimidine nucleotides. Inhibitors of nucleotide metabolism. Disorders of purine and pyrimidine metabolism – Lesch-Nyhan syndrome, Gout, SCID, De novo and salvage biosynthesis of purine & pyrimidine nucleotides & regulation, biosynthesis of deoxy ribonucleotides, Mechanism of action of anti-cancerous drugs affecting nucleic acid metabolism.	

List of Practicals with basic instructions (Total = 72 hrs)

1. Estimation of serum creatinine.

- 2. Isolation of egg albumin from egg white.
- 3. Estimation of serum uric acid.
- 4. Estimation of DNA by diphenylamine method.
- 5. Estimation of RNA by orcinol method
- 6. Estimation of bilirubin in serum
- 7. Isolation of RNA and DNA from tissue/culture.

Course Learning Outcomes: On the successful completion of this course

- Students will acquire analytical skills related to nitrogenous compound analysis
- Clinical significance of abnormalities in protein-related pathways,
- Students will develop analytical skills in studying protein-derived compounds, enhancing their ability to diagnose and research related disorders.

AUTHOR	TITLE	Publisher	Year of publicat ion	ISBN	Pages
G. C. Barrett, D. T. Elmore,	Amino Acids and Peptides	Oxford Brookes University	1998	9781139163828	224
Michael Murphy, Rajeev Srivastava, Kevin Deans	Clinical Biochemistry : An Illustrated Color Text	Academic Press	7th Edition, 2023	9780323881661	200
Donald, V. and Judith G.V.	Biochemistry	4 th ed. Wiley	2010	978- 0470570951	1428
Lubert Stryer	Biochemistry	9 th ed. W.F. Freeman and Co.	2019	978- 1319114671	1296

Membrane Biology and Bioenergetics

L	Т	Р	TOTAL CREDIT UNITS
4	0	2	6

Objective: To make students aware of the structural and functional aspects of membranes. Highlighting the significance of their compositional heterogeneity & to various cell functions

	Teaching Hours
Unit I: Biological membrane	18 hrs
An integrated discipline in life Sciences historical developments. Membrane structure and organization: Genesis of different biological models of membranes structure and raft concept. Organization of proteins and lipids in the membranes. Protein- lipid interactions Fluid mosaic model of membrane structure, its merits and demerits. Constituents of biological membranes in prokaryotes and eukaryotes. Asymmetric nature of biomembranes and its significance. Structure of RBC membrane.	
Unit II: Membrane dynamics and transport system	18 hrs
Physical properties of membrane lipids, membrane fluidity, phase transitions, cytological biochemical probes and methods to study membrane fluidity. Membrane transport: Types of membrane transport, passive diffusion, facilitative diffusion, carrier mediated active transport group transfer of sugars in bacteria. Role of Na, K- ATPase. Ca- ATPase & H ⁺ -ATPase. Ionophores and siderophores, structure	
Unit III: characterization, biosynthesis and significance	18 hrs
Membrane analysis: Isolation and characterization of cell membranes, criteria of membrane purity. Extraction of membrane lipids and proteins. Solubilization of membranes and their reconstitution. Insertion of components, labeling of membrane probes and determination of transbilayer distribution of membrane components. Liposomes: Unilamelar and multilamelar vesicles. Methods of their preparation, characterization and their applications in targeting drugs and gene therapy. Biogenesis and turnover of membranes: Synthesis of membrane components and their trafficking, signal hypothesis, coated vesicles. Regulation and coordination of membrane component synthesis. Membrane disorders: Erythrocyte deformities, transport disorders. Disorders of membrane lipids	
Unit IV: Fundamentals of bioenergetics	18 hrs
Concepts of bioenergetics, principles of thermodynamics & their application in Biochemistry, concept of free energy, relation between equilibrium constant & standard free energy change, biological standard state and standard free energy change in coupled reactions, biological redox reactions, redox potential, its relation with the free energy change (including derivation & numericals). High energy phosphate compounds, phosphate group transfer potential.	

<u>List of Practicals with basic instructions</u> (Total = 72 hrs)

- 1. Cell fractionation
- 2. Isolation of mitochondria
- 3. Isolation of chloroplasts from spinach leaves
- 4. Identifying fractions with marker enzymes
- 5. Extraction and estimation of lipids from membrane
- 6. Effect of inhibitors and uncouplers on ATP Synthesis
- 7. RBC ghost cell preparation and separation of proteins by SDS-PAGE
- 8. Estimation of phospholipids
- 9. Preparation of liposomes
- 10. Estimation of cholesterol
- 11. Effect of detergents and other membrane-active substances on erythrocytes.

Course Learning Outcomes:

- Understanding of membrane structure, composition, and functions, and membrane-associated processes.
- Understanding cellular processes such as signaling, trafficking, and homeostasis.
- Enhancing the understanding of membrane-related diseases and therapies.
- Understanding the concept of membrane biophysics.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Jain MK.	Introduction to Biological membranes	John Wiley andSons Ltd	1988	97804718 44716	423
Vance DE & Vance JE,	Biochemistry of Lipids, Lipoproteins and Membranes	Benzamin Cummings	2002	97804445 11386	648
RB Gennis Biomembranes	Biomembranes: Molecular Structure and Function	Springer Verlag	2013	978-1- 4757- 2065-5	533
Gerald Karp, Janet Iwasa, Wallace Marshall	Karp's Cell and Molecular Biology	9 th ed. Wiley-Lis New York,	2020	978- 11195982 44	944
Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger; Anthony Bretscher; Hidde Ploegh; Kelsey C. Martin; Michael Yaffe; Angelika Amon	Molecular Cell biology of cell	9 th ed. WH Freeman	2021	97813192 08523	1264
BTY207:Recombinant DNA Technology

L	Т	Р	Total Credits
3	0	1	4

Course Objective: To teach methods of DNA manipulations, cloning and gene editing

Course content and syllabus Teaching Hours Unit I: Gene Cloning and DNA Analysis 18 hrs Polymerase chain reaction, DNA modifying enzymes: polymerases, kinases, ligases, phosphatases; Primers designing, Purification of DNA fragments, Restriction enzymes, DNA ligation, Vectors, DNA Transformation, GENOMic DNA and Plasmid Isolation, Restriction digestion and DNA Analysis by gel electrophoresis. Unit II: Vectors for Gene Cloning and DNA Manipulation 9 hrs Cloning vectors based on E. coli plasmids, Plasmid copy number control, Cloning vectors based on M13 bacteriophage, Cloning vectors based on 8 bacteriophage, 8 and other high-capacity vectors enable genomic libraries to be constructed, Vectors for other bacteria, Bacterial Artificial chromosomes (BACs); Vectors for yeast and other fungi, Yeast artificial chromosomes (YACs), Cloning vectors for higher plants, Tobacco Mosaic Virus (TMV); Cloning vectors for animals. Problem of Plasmid incompatibility, The problem of selection, Direct selection, Identification of a clone from a gene library, Methods for clone identification. Unit III: Cloning a Specific Gene 18 hrs Transduction, conjugation and transfection, Types of plasmids, Recombinant Bacterial strains for bioremediation; online servers/software for DNA and protein analysis: Acquiring DNA sequence encoding the protein of interest (for example GFP) from online database like PUBMED and PDB. Analysis of DNA sequence for presence of internal restriction digestion sites etc. **Unit IV: Advanced Cloning Techniques** 9 hrs Homologous recombination, Molecular mechanism of RecBCD, RecA, RuvA-B, Holliday Model; Non-homologous End Joining (NHEJ) versus Homologous DNA recombination; Positive and negative selection, Zinc finger nucleases (ZFN), Transcription activator-like effector nucleases (TALENs), Discovery of adaptive immunity, The CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats) system, Methods to create gene-knock out animal model systems. Cre-LoxP recombination system

List of Experiments

- 1. Acquiring DNA sequence encoding the protein of interest (for example GFP) from online database likeGenbank and Uniprot. Analysis of DNA sequence for presence of internal restriction digestion sites etc using softwares like gene runner.
- 2. Primer designing: Designing of 5' forward and 3' reverse complementary primers containing appropriate restriction digestion sites, affinity tags (penta-His etc.).
- 3. PCR amplification of the DNA segment of interest from a suitable source, purification of the PCRproduct.
- 4. Restriction digestion, and subsequent ligation into the suitable bacterial expression vector (also containing an antibiotic resistant marker) of interest.
- 5. Preparation of competent cells and transformation into suitable competent cells (BL21 etc.).
- 6. Selection of the antibiotic resistant single colony.
- 7. Plasmid isolation from the transformed cells and sequencing it to confirm the sequence of cloned DNA segment of interest.

Course Learning Outcomes:

Students will be able to:

- 1. Understand basic concepts of DNA manipulation.
- 2. Understand the procedure of gene cloning
- 3. Have a thorough understanding of vectors
- 4. Perceive knowledge of advanced gene editing method.

Author	Title	Publisher	Ed/year	ISBN No	Pages
J. Sambrook, E. F. Fritsch, and T. Maniatis, 2nd Edn.,	Molecular cloning: a laboratory manual,	Cold Spring Harbor Laboratory Press	3rd Ed	978- 0879695767	2344
T.A. Brown	Gene Cloning and DNA Analysis - An introduction	Wiley - Blackwell	2010	978140518173 0	338

Professional Etiquette and Presentation Skills

L	Т	Р	TOTAL CREDIT UNITS
2	0	0	2

Course Objectives: This course is aimed to equip students with effective written and employment communication. In this course, students will learn some theoretical inputs into the difference between written and oral communication, the process of writing, its different types and strategies the correct format of business documents, and cross-cultural communication, persuasion and employment communication.

		Teaching Hours
Unit I-	-Writing Process & Workplace Communication	9 hrs
•	Writing process: Pre-writing, writing & post writing	
•	7Cs of Writing	
•	Business Letters	
•	Notice	
•	Agenda	
•	Minutes of meeting	
•	Virtual Meeting and Video Conferencing	
•	Nuances of conducting effective meetings	
Unit II	-Presentation Skills	10 hrs
•	Planning, preparation, Practice, Performance	
•	Audience analysis	
•	Analyzing the nonverbal communication	
•	Story-Telling	
•	Methods of Delivery: Impromptu, Extemporaneous, Memorisation,	
	Manuscript, Outlining	
Unit II	I— Professional Etiquette	8 hrs
•	Power Dressing	
•	Telephonic Manners/ Voice mail etiquette	
•	Business Salutation Etiquette	
•	Different Cultural Etiquette & Protocol	
•	Teamwork	
•	Time-Management	
Unit I	/- Cross Cultural Communication	9 hrs
•	Cross Cultural Communication: meaning and significance	
•	Definition of Culture	
•	Elements of Culture	
•	Characteristics of Culture	
•	Culture and Context	
•	Cultural Shock: Meaning and Stages	
•	Ethnocentrism, Stereotyping, Xenophobia and Cultural Relativism	

- Strategies for Effective Communication in multicultural context
- Acculturation

Course Learning Outcomes: At the end of this course, students will be able to:

- Understand the nature, importance, and process of written communication.
- Deliver effective presentations in contexts that may require power point, extemporaneous or impromptu oral presentations
- Acquire and exhibit professional etiquette.
- Respect other cultures and develop rapport in a multi-cultural society, thereby developing a broadened unbiased perspective.

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
Herta Murphy, Herbert Hildebrandt, Jane Thomas	Effective Business Communication	McGraw Hill Education	2017	978- 0070187757	640
Karen Schneiter Williams, Joyce P Logan, A.C. Buddy Krizan, Patricia Merrier	Communicating in Business	Cengage Learning India Private Limited	2012	978- 8182093195	712
Ryan Sharma	The Unwritten Rules of Professional Etiquette	Habile Press	2020	978- 1734980509	122

Sr. No	Course Code	Course Title	Course Type	Cre	CreditUnits		
				L	Т	PS	Total credits
1	HGM301	Molecular Biology	Major Core Course	4	0	2	6
2		Lipid Biochemistry	Major Core Course	4	0	2	6
3.		Endocrinology	Major Core Course	4	0	0	4
4.	BIF301	Intoductory Bioinformatics	Minor Course	4	0	0	4
5.		Environmental Biology	Minor Course	2	0	0	2
		Total Credits	I				22

Programme structure for B.Sc. (H) Biochemistry (3 Years) (5thSemester)

(Courses under MC can be floated through MOOC.)

*

HGM301: Molecular Biology

L	Т	Ρ	Total Credits
4	0	2	6

Course Objectives: To teach the fundamentals of DNA replication, transcription and translation

	Teaching Hours
Unit I: Genes and Genomes	15 hrs
The History and Birth of Molecular Biology. Relationships between genotype andphenotype. Contributions of Nobel Laureates in the area of Molecular Biology Genes and Genomes: Molecular definition of gene. Organization of genes on chromosomes. Repetitive DNA. Simple sequence DNA. Interspersed-Repeat DNA andmobile DNA elements. Chromosome structure: Bacterial chromatin and specific proteins to condense bacterialDNA. Nucleosomes. Chromatin organization in eukaryotes. Functional Rearrangements in chromosomal DNA.Extra-nuclear genomes, Specific notations, conventions and terminologies used in genetics	
Unit II: DNA Replication, Damage and Repair	21 hrs
DNA replication is semi-conservation and bi-directional. DNA replication in bacteria: Initiation, elongation and termination of bacterial DNA replication. Enzymes involved in DNA replication. Eukaryotic DNA replication machinery. Initiation, elongation and termination of replication. Telomeres and Telomerase. Leading strand problem in replication. DNA replication in Archaea DNA damage and repair mechanisms	
Unit III: Transcription	18 hrs
RNA Transcription in bacteria and eukaryotes RNA and Transcription: Types of RNA. Types of RNA polymerase and structure; Molecularapparatus and events during prokaryotic and eukaryotic RNA synthesis. Post— transcriptional modifications of transcripts. Processing of different types of RNA. RNA editing. Formation of spliceosome complex. Inhibitors of RNA metabolism and their mechanism of action; RNA degradation.	
Unit IV: Protein Translation	18 hrs

Genetic code: Its deciphering, degeneracy and general features.	
tRNA, aminoacylation of tRNA, tRNA identity and aminoacyl tRNA synthetases.	
Structure of ribosomes, and its assembly and disassembly. Codon: anti-codon	
base pairing, Wobblehypothesis	
Translation in Prokaryotes: formation of initiation complex, initiation factors,	
elongation, elongation factors, and termination.	
Translation in Eukaryotes: formation of initiation complex, initiation factors,	
elongation, elongation factors and termination.	
Translation proof-reading, translation inhibitors.	
Post-translation modifications of proteins and their effect on their	
structure and function.	
Protein targeting: Signal sequence and targeting of proteins to specific	
cellular locations.	

<u>List of Experiments -with basic instructions</u> (Total Teaching = 72 hrs)

- 1. Verification of Chargaff's rule by paper chromatography.
- 2. Ultraviolet absorption spectrum of DNA and RNA.
- 3. Determination of DNA and RNA concentration by A260nm.
- 4. Determination of the melting temperature and GC content of DNA.
- 5. To study the viscosity of DNA solutions.
- 6. Isolation of chromosomal DNA from E. coli/plant/yeast/animal cells.
- 7. Recombinant Protein Expression and Purification

Course Learning Outcomes: at the end of this course, students will learn about:

- History and development of molecular biology, structure of genome and terminologies used inmolecular genetics
- DNA replication in bacteria, archaea and eukaryotes
- Mechanism of transcription in bacteria and eukaryotes.
- Mechanisms of translation and bacteria and eukaryotes.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Watson, JD., Baker, TA., Stephen, PB., Alexander, G., Levine, M., Losick R.	Molecular Biology ofthe Gene	Pearson Education	7 th Ed	978- 9332585478	912
Tropp, B.E.	Molecular Biology Genes to Proteins	Jones an d Bartlett	4 th Ed	978-93- 80853- 49-9	1096

Lipid Biochemistry

L	Т	Ρ	TOTAL CREDIT UNITS
4	0	2	6

Course Objective: To learn pathways of lipid metabolism & their derivatives

Course curriculum:

	Teaching Hours
Unit I: Lipid catabolism	18 hrs
Digestion and absorption of lipids. Catabolism of saturated and unsaturated fatty acids (β-oxidation) and branched chain fatty acids (α-oxidation). ω-oxidation, peroxisomal degradation of fatty acids, Ketone body formation and their utilization. Degradation of triacylglycerols and phospholipids. Regulation of fatty acid oxidation and triacylglycerol hydrolysis.	
Unit II: Lipid biosynthesis	18 hrs
Biosynthesis of saturated and unsaturated fatty acids, their elongation and regulation. Biosynthesis & functions of triglycerides, phospholipids, ether lipids, spingolipids, glycolipids, gangliosides. Respiratory distress syndrome Metabolism of eicosanoids (synthesis, inactivation and biological importance). Biosynthesis of cholesterol. Regulation of cholesterol synthesis	
Unit III: Terpenes and steroids and fat-soluble vitamins	18 hrs
Terpenes and steroids: Structure, classes and functions of terpenes and terpenoids. Basic structure of steroids; animal sterols, Phytosterols, sterols of yeast & fungi (Mycosterols). Color reactions of sterols. Biosynthesis of Dolichol, Steroidal hormones, Bile acids. Fat soluble vitamins-structures and biological functions of Vitamin A, D, E and K.	
Unit IV: Lipoproteins, liposomes, structure, functions, metabolic pathways	18 hrs
Structure metabolism and functions of lipoproteins. Relationship between cholesterol and atherosclerosis. Structure and applications of liposomes, Biomedical consequences of lipid metabolism. Disorders of metabolism of complex lipids. Integration of metabolic pathways.	

List of Practicals with basic instructions (Total = 72 hrs)

- 1. Estimation of total lipids in serum by Vanilin method.
- 2. Estimation of inorganic phosphate and phospholipids.
- 3. Estimation of cholesterol in serum.
- 4. Estimation of free fatty acids.

- 5. Estimation of Vitamin D.
- 6. Separation of lipids by thin layer chromatography on silica gel plates.
- 7. Qualitative and quantitative analysis of ketone bodies.
- 8. Estimation of Vitamin A.

Course Learning Outcomes: On the successful completion of this course,

- Understanding of the biochemical processes involving lipids, including their synthesis, breakdown, and the roles of various lipid derivatives.
- Students will be able to comprehend the molecular basis of lipid-related diseases, lipid signaling pathways, and the development of therapeutic interventions.
- Students will acquire skills in lipid analysis techniques and their applications in research and clinical settings,

AUTHOR	TITLE	Publisher	Year of publication	ISBN	Pages
Donna Thompson	Handbook of Lipid Metabolism	8 th ed. W.H. Freeman;	2015	978- 1632394019	292
Neale D. Ridgway and Roger S. McLeod	Download Biochemistry of Lipids, Lipoproteins and Membranes	Academic Press	2010	978-0-444- 63438-2	599
Antonio Blanco Gustavo Blanco	Medical Biochemistry	Academic Press	2017	978-0-12- 803550-4	805

BIF301: Introductory Bioinformatics

L	т	Ρ	Total Credits
4	0	0	0

Course Ojbectives: Equipping students with foundational knowledge in bioinformatics, enabling them to analyze biological data, navigate bioinformatics tools and databases, and understand the interdisciplinary aspects of this field, thereby preparing them for further studies or careers in bioinformatics and related areas.

	Teaching Hours
Unit I: Introduction to Bioinformatics and Biological Databases	18 hrs
Introduction to Bioinformatics. Historical background. Scope of bioinformatics in modern research Introduction to biological databases - primary, secondary and composite	
databases, NCBI, PubMed, nucleic acid databases (GenBank, EMBL, DDBJ, NDB), protein databases (UniProt-Swiss-Prot, PDB), Structure visualization softwares (RasMol, PDBviewer), file formats (FASTA, ASN Genbank).	
Unit II: Sequence alignment	18 hrs
Concepts of sequence similarity, identity and homology. Alignment – local and global alignment, pairwise and multiple sequence alignments, amino acid substitution matrices (PAM and BLOSUM). Programs for pairwise and multiple sequence alignment (CLUSTALW), Introduction to database searchusing BLAST.	
Unit III: Protein Structure Prediction	18 hrs
Hierarchy of protein structure - primary, secondary and tertiary structures Structural Classes, Motifs, Folds and Domains. Protein secondary structure prediction Protein tertiary structure prediction in presence and absence of structure template. Energy minimizations and evaluation by Ramachandran plot. Protein structure and rational drug design.	
Unit IV: Genome Organization and analysis	18 hrs

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes.	
Genome, transcriptome, proteome, 2-D gel electrophoresis, MALDI- TOF	
spectrometery. Major features of completed genomes: E.coli, S.cerevisiae,	
Arabidopsis, Human.	

Course Learning Outcomes:

- 1. Understand role of biological databases and download appropriate literature, sequences and otherrelevant information from biological databases
- 2. Understand importance of sequence alignment
- 3. Predict structures of proteins
- 4. Understand organization of genomes and techniques used to study.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Xiong, J.	Essential Bioinformatics	Cambridge University Press	2006	0521706106, 978- 0521600828	352
Ghosh, Z. and Mallick, B.	Bioinformatics –Principles and Applications	Oxford University Press	2008	0195692306, 978019569230 3	560

Endocrinology

L	Т	Р	Total Credits
4	0	0	4

Course objectives: The course aims to provide a comprehensive understanding of the endocrine system, focusing on its functional organization, hormone actions, physiological roles, and associated pathologies. Through detailed exploration of signal transduction pathways, receptor mechanisms, and the biochemical basis of hormone release, students will develop insights into the regulation of various endocrine glands and their impact on overall health, including the influence of lifestyle factors.

Course content and syllabus

		Teaching Hours
	Unit I Basics if Endocrine System	18 hrs
<u>Course</u>	Functional organization and general characteristics of endocrine system, target gland concept, Negative and positive feed-back control, Classification of hormones, Methodsto assay quantity and quality of hormones.	
	Unit II Hormone Action	18 hrs
	Mechanism of hormone action: Signal transduction pathways for steroidal and non- steroidal hormones, role of receptors, receptor desensitization, steroid hormones, signalling involving cyclic AMP, cyclic GMP, phosphoinositides, calcium, diacylglycerol and nitric oxide, kinase-phosphatase system and its examples.	
	Unit III: Physiology of hormonal system	18 hrs
	Structure, biosynthesis and release of hormones, biochemical and physiological role, and pathophysiology of Hypothalamus; Pituitary, Thyroid; Parathyroid, Calcitonin acid Vitamin D3; Adrenals; Pancreas; Gonads; G.I.T. tract; Heart (Endothelins and ANF). Various diseases associated with these glands. How lifestyle plays an important role to maintain hormonal balance.	
	Unit IV: Growth Factors	18 hrs
	Growth factors: Chemistry, Biological functions and mechanism of action of Epidermal growth factor; Hematopoietic cell growth factor; Fibroblast growth factor and Interleukins; Insulin like-growth factors, Nerve growth factors. Placental hormones	

Learning Outcomes:

- Understand in detail about human Endocrine System.
- Perceive knowledge about various glands and diseases associated.
- Understand in detail about how hormones act on human body.
- □ Acquire knowledge about various growth factors.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Murray, R.K., Granner, D.K. and Rodwell, V.W,	Harper's Illustrated Biochemistr y	McGraw Hill	30 th /2018	978- 0071825344 0071825347	817
B. Alberts, D. Bray, J. Lewis,Martin Raff, Keith Roberts,and J. D Watson	Molecular andCellular Biology	Garland Science	6 th /2012	978-0818 344322 0818 344325	1464
David G. Gardner, Dolores M. Shoback	Greenspan's Basic and Clinical Endocrinolog y	McGraw Hill	10 th /2017	978- 1259589287 1259589285	944
ShlomoMelm ed, Kenneth Polonsky, P. Reed Larsen, Henry M. Kronenberg	Williams Textbook of Endocrinology	Elsevier	30 th /2016	978- 0323555968 0323555969	1792
Kumar V, Abbas, A.K., and Aster, J.C.	Robbins Basic Pathology	Saunder s Elsevier.	8 th /2007	978- 1416029731	952

Environmental Biology

L	т	Р	Total Credits
2	0	0	2

Course Objectives: This course aims to provide students with a basic understanding of the physical environment encompassing atmosphere, hydrosphere, lithosphere, and biosphere. Further, it also helps them to learn about different biological resources, techniques and their importance in environmental biodiversity conservation and management.

Course content and syllabus

	Teaching Hours
Unit-1 Concepts of Environment	9 hrs.
Environment: Definition and importance; Principles and Scope, Atmosphere: Composition of air- Layers of Atmosphere, Ozone layer, Hydrosphere, hydrologic cycle, Lithosphere, Biosphere: Concept and definition; Types of Biomes and their distribution. Biogeographic zones: Phytogeographic zones, Zoogeographic zones	
Unit-2 Biodiversity and Conservation	9 hrs.
Introduction to Biodiversity: Definition, concept and Types of biodiversity, Status of Biodiversity – Global, National and Local Status, Types and Significance of Biodiversity, Threats to Biodiversity, Biodiversity Conservation: Current Practices in Conservation - In Situ Conservation and Ex Situ Conservation of Threatened Species - Cryopreservation, Gene Banks, Gene Pool and Species Conservation	
Unit-3 Biological Resources	9 hrs.
Forest Types and their resources, Carbon Sequestration, Use and Over-Exploitation – Timber and their Resources, Effects on Forest and Tribal People – Social and Cultural Forest, Agricultural resources and practices, green revolution, White revolution and blue revolution, livestock resource.	
Unit-4 Environmental Microbiology and Biotechnology	9 hrs.
Ecological Restoration: Wastewater treatment: Anaerobic and aerobic process, Methanogenesis, Bioreactors. immobilization techniques - Bioremediation: Biostimulation and Bioaugmentation, Phytoremediation. Biofertilizers – Biopesticides – Biofuels – Biomining. Genetically Modified organisms - merits and demerits	

Course Learning Outcomes:

- 1. The learner will understand the structure and function of our life supporting environment along with fundamentals of Environmental sciences.
- 2. The student could understand the threats to biodiversity and can identify the suitable technique for conservation of biodiversity.
- 3. The student would understand the importance of energy resources in a systematic way.

4. They will know suitable methods for characterizing the activity, function, diversity and composition of microbial communities.

Sr. No	Course Code	Course Title	Course Type	ype Credit Units		S	
				L	Т	Р	Total Credits
1	BCH302	Regulation of Gene Expression	Major Core Course	4	0	2	6
2		Physiological Biochemistry	Major Core Course	4	0	2	6
3		Nutritional And Clinical Biochemistry	Major Core Course	4	0	0	4
4		Pharmacogenetics	Minor Course	4	0	0	4
5		Plant Biochemistry	Minor Course	2	0	0	2

Programme structure for B.Sc. (H) Biochemistry (3 Years) (6th Semester)

Total Credits

22

(Courses under MC can be floated through MOOC.)

BCH302- Regulation of Gene Expression

L	т	Ρ	Total Credits
4	0	2	6

<u>Objectives</u>: An understanding of different ways prokaryotes and eukaryotes regulate the expression of various gene and methods to study DNA-Protein interaction.

	Feaching
H	Hours
Unit I: Regulation of Gene Expression in Prokaryotes 18	18 hrs
Regulation of Gene Expression in Prokaryotes: concept of operon, ORF.	
Control at initiation of transcription. Promoter strength and role of sigma	
factors. Lac Operon (Genetic and Biochemical aspects), araBAD operon.	
Catabolite repression. trp and hisOperons.	
Regulation of genes for ribosomal RNA and proteins.Bacterial viruses(Lytic	
and Lysogenic modes).	
Role of small molecules and RNA in gene control. Riboswitches and bacterial	
two component system.	
Unit II: Regulation of Gene Expression in Eukaryotes 18	18 hrs
Regulation of Gene Expression in Eukaryotes: Gene regulation in Yeast	
(Galactosemetabolism, Gal 4 protein, Mating Type), role of mediators,	
enhancer elements. Chromatin remodelling: histone modification, epigenetic	
changes, Genomic imprinting of Igf2 and H19 genes	
Post-transcriptional regulation. RNA silencing: siRNA, miRNA, transitive RNAi,	
ncRNA.	
Regulation at translational level	
Unit III: DNA-Protein Interaction 18	18 hrs
Structures of DNA binding domain: HTH, wHTH, zinc fingers, leucine	
zippers, HLH, Loop-sheet-helix. Specificity in DNA-protein interactions.	
Techniques to study DNA-protein interaction- DNA footprinting, DNA pull	
down, EMSA, Super-shift, ChIP, reporter assays, Co-crystal studies, yeast two	
hybrid system, FISH.	
Unit IV: Genome Cluster and Genomic Imprinting	lð hrs
Genomic regulatory domains: Introduction to regulation of expression of gene	
clusters; locus control region (LCR): structure and function LCR of mouse globin	
gene cluster; insulators, structure and functions, the insulators of <i>hsp10</i> genes	
or Drosophila melanogaster	
Cellular and molecular mechanisms of development. <i>Drosophila melanogaster</i> ,	
Grauents decide compartments, material gene products establish gradients in	
ventral development even recenter ligend interactions	
determine cell fate at blastula stage complex lesi involved in regulation	
homeobox and homeotic genes. Nematode (C. elegans) development	

List of Experiments -with basic instructions

- 1. Extraction of total nucleic acids from plant tissue.
- 2. Diauxic growth curve effect.
- 3. Isolation of mRNA from yeast by affinity chromatography.
- 4. Effect of inhibitors on protein synthesis.
- 5. Accumulation of protein due to proteasome inhibitors.

Course Learning Outcomes: at the end of the students will learn about

- 1. Concept and knowledge of different strategies in the regulation of gene expression in prokaryotes
- 2. Concept and knowledge of different strategies in the regulation of gene expression in eukaryotes
- 3. Understand structure of DNA-binding domains and techniques to study DNA-Protein Interaction
- 4. Role of Genome Cluster and Genome imprinting in gene expression.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Krebs, J.E., Goldstein,	Lewin's Genes XII	Jones and	12 th Ed	978-	838
E.S., and Kilpatric, S.T.		Bartlett		1284104493	
		Learning			
Watson JD, Baker TA,	Molecular Biology of	Pearsons	7 th Ed.	978-	912
Bell SP, Gann A, Levine	the Gene	Publishers		9332585478	
M, Losick R.					
Tropp, B.E.	Molecular Biology	Jones and	4 th Ed.	978-93-80853-	1096
	Genes to proteins	Bartlet		49-9	
Alberts, B., Johnson, A.,	Molecular Biology of	Garland	6 th Ed	978-0-818 3-	1342
Lewis, J., Morgan, D.,	The Cell	Science		4464-3	
Raff, M., Roberts, K., and					
Walter, P.					

Plant Biochemistry

L	т	Р	Total Credits
2	0	0	2

Course Objectives: This course aims to provide students with a basic understanding of the structure and function of plant organelles. Additionally, students will gain valuable insight into different types of enzymes involved in the regulation of important processes, such as photosynthesis, respiration, and metabolism.

Course content and syllabus

	Teaching Hours
Unit-1 Plant Organelles and their enzymes	9 hrs.
Structure, Function and biogenesis of chloroplasts, Mitochondria and microbodies (peroxisomes and glyoxysomes), Enzymes and its functions, Principles, nomenclature and kinetics, Enzymes, how enzymes work and isozymes, Enzyme kinetics, Enzyme regulation	
Unit-2 Photosynthesis	9 hrs.
Evolution of photosynthesis, Photosynthetic electron transport, Components or photosynthetic apparatus and their role, phosphorylation, C3, C4 and CAM pathways Photorespiration and Starch and sucrose formation. Carbon partitioning.	,
Unit-3 Respiration	9 hrs.
Glycolysis, Pentose Phosphate Pathway, TCA cycle, Oxidative electron transport and phosphorylation, Interactions among primary metabolic pathways.	
Unit-4 Nitrogen/Sulphur and fat metabolism	9 hrs.
Symbiotic and asymbiotic nitrogen fixation, Biosynthesis of amino acids, Glyoxylate cycle, Fatty acid Formation/Oxidation, Sulfate assimilation pathway, Glutathione synthesis and function	

Course Learning Outcomes:

- 1. Gain an understanding of the structure and function of plant organelles.
- 2. Learn about enzyme classification, activation, and inhibition.
- 3. Investigate the metabolism of vital elements such as sulfur, nitrogen, and fat.
- 4. Understand how enzymes facilitate nutrient utilization and storage.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Buchannan B, Gruiseem W, Jones R	Biochemistry and Molecular Biology of Plants	ASPP, Maryland	2000	044898255	564
Hans-Walter Heldt	Plant Biochemistry	Academic Pres	2006	978- 0120883912	656
Taiz L and Zeiger E	Plant Physiology	Sinauer Associates	2006	9780878935659	782

Pharmacogenetics

L	Т	Р	Total Credits
4	0	0	4

<u>Course Objectives:</u> After studying this course, the students will be able to understand several genetic diseases. They will be able to understand how a single gene and a group of genes working in coordination affect a majorsystem. They will be able to acquire knowledge about various genetic disorders and their recent therapies.

Course curriculum:

	Teaching Hours
Unit I Introduction to Genetic Disorders	18 hrs
An overview of the genetic basis of syndromes and disorders. Spectrum of genetic diseases (single gene, chromosomal, multifactorial, mitochondrial, somatic cell genetic diseases) and patterns of their inheritance.	
Unit II Monogenic and multifactorial Diseases	18 hrs
 Monogenic diseases with well-known molecular pathology 1. Cystic fibrosis 2. Tay-Sachssyndrome 3. Marfan syndrome. Multifactorial Diseases: 1. Diabetes type 2; Cancers; 3. Hypertension; 4. Obesity; 5. Atherosclerosis 	
Unit III: Various genetic disorders	18 hrs
 Disorders of muscle 1. Dystrophies (Duchenne Muscular dystrophy and Becker MuscularDystrophy) 2. Myotonias 3. Myopathies Disorders of Haemopoietin systems 1. Overview of Blood cell types and haemoglobin 2. Sickle cell anaemia 3. Thalassemias 4. Hemophilias. Chromosomal instability syndromes – Ataxia telangectasia, Fanconi anemia, Bloom's Syndrome, Nijmegen breakage syndrome. 	
Unit IV: Therapies for Genetic Disorders	18 hrs
Therapies for genetic disorders and multifactorial diseases: Stem cell therapies: stem celltypes, cord blood cells, bone marrow transplantation; current stem cell therapies; gene therapies: methods; diseases suitable for gene therapies: hemoglobinopathies, cystic fibrosis, muscular dystrophies, cancer; challenges in gene therapy; regulatory requirements. Management of genetic disorders.	

- <u>Course Learning Outcomes:</u>
- Understand several genetic diseases.
- Perceive knowledge about how a single gene and genes working in coordination affect a majorsystem.
- Acquire knowledge about various genetic disorders.
- Acquire knowledge about recent therapies for genetic disorders.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Roderick R. McInnes and Huntington F. Willard	Thompson & Thompson Genetics in Medicine	Elsevier	8 th /2018	978- 1437706963 1437706967	560
Cox and Sinclair	Molecular Biologyin Medicine	Blackwell	1997	0-632-02784-1	340
DE Grouchy and Turleau	Clinical Atlas on Human Chromosomes.	John Wiley &Sons	2 nd /1984	047189205X 978-0471892052	487
Strachan, T. andRead, A. P	Human Molecular Genetics	Garland Edition	4 th /2011	978-0818 341499 0818 341490	781
Jankowski and Polak	Clinical Gene Analysis and Manipulation	Cambridge	1996	9780521478960	475

Physiological Biochemistry

L	Т	Р	Total Credits
4	0	2	6

Course objective: The course aims to provide students with a comprehensive understanding of physiological biochemistry, encompassing the intricate mechanisms underlying cellular and systemic functions in the human body. Through detailed study of blood clotting, respiratory processes, gastrointestinal and hepatic physiology, as well as reproductive and neurophysiology, students will gain insights into the biochemical basis of health and disease.

	Teaching Hours
Unit I: Blood Cells and Blood Clotting:	18 hrs
Blood components and their function, plasma proteins, molecular mechanism of blood coagulation, role of vitamin K in coagulation, anticoagulant and fibrinolytic systems. Anemias, polycythemia, haemophilia and thrombosis. Homeostasis: Intracellular, extracellular and interstitial fluid. Acid Base Balance: Acid base balance; Role of blood buffers; respiratory and renal mechanism in the maintenance of blood pH; Excretory System: Anatomy of the kidney and the nephron; formation of urine; tubular re-absorption of glucose, water and electrolytes; tubular secretion; regulation of water and electrolyte balance; role of kidneys and hormones in their maintenance, Assessment of kidney function. Physiology of glomerular filtration and GFR. Acidosis and alkalosis. Glomerular nephritis, renal failure, dialysis and diuretics.	
Unit II: Respiration	9 hrs
Components of respiratory system and their functions; Mechanism of respiration, transfer of blood gases- O2 and CO2; Bohr effect; role of chloride ions in oxygen transport; effect of 2,3-BPG on O2 affinity of hemoglobin; Clinical importance of 2,3-BPG, Regulation of respiration. Hypoxia, hypercapnea. Muscle: Types of muscles, muscle proteins, organization of contractile protein and mechanism of muscle contraction, sources of energy for muscle contraction. Physiology of the cardiac muscle, control of cardiac function and output. Arterial & venous system, capillary fluid exchange. Arterial pressure and its regulation. Hypertension, atherosclerosis and myocardial infarction.	
Unit III: Gastrointestinal Physiology	18 hrs

General principles of alimentary tract secretion; Composition, function, stimulation and regulation of saliva, gastric, pancreatic, intestinal and bile secretions. Importance of mucous(Lubricating & protective properties); Digestion and absorption of carbohydrates, lipids and proteins. Peptic ulcer, diarrhoea and constipation. Hepatic Physiology: Anatomy of the hepatic lobule and blood flow into the liver. Formation and secretion of bile; enterohepatic cycle, reticuloendothelial system, metabolic importance of liver. Liver function tests. Jaundice, liver cirrhosis and fatty liver.	
Unit IV: Reproductive Physiology	9 hrs
Hormonal regulation of testicular and ovarian function, spermatogenesis and oogenesis, Puberty, pregnancy and lactation, Biochemistry of milk and colostrum. Neurophysiology: Neuron, types of synapses, transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron; Characteristics of some important neurotransmitters (Dopamine, GABA, Glutamate Acetylcholine, Serotonin, NO)	

List of Experiments

- 1. Hematology
 - 1. RBC and WBC counting
 - 2. Differential leucocyte count.
 - 3. Clotting time
- 2. Estimation of haemoglobin.
- 3. Separation of plasma proteins.
- 4. Determination of total iron binding capacity.
- 5. Measurement of blood pressure.
- 6. Separation of isoenzymes of LDH by electrophoresis.
- 7. Histology of connective tissue, liver and/ brain permanent slides.
- 8. Estimation of osmolarity in blood.
- 9. Estimation of ammonia in blood.

Course Learning Outcomes:

Students will be able to:

- 5. Understand the intricate biochemical mechanisms underlying physiological functions.
- 6. analyze and interpret biochemical data to understand normal and pathological processes.
- 7. diagnose and propose interventions for physiological disorders.
- 8. Perceive the holistic nature of human physiology.

Author	Title	Publisher	Ed/year	ISBN No	Pages
Rodney	Concepts in	Wiley	2nd/2018	978-	848
Boyer	Biochemistry			1119293300	
Jeremy	Biochemistry	W. H.	9th/2019	978-	1256
M. Berg		Freeman		1319114657	
et al.					

David L. Nelson	Lehninger Principles of Biochemistry	W. H. Freeman	7th/2017	978- 1464126116	1276
Lubert Stryer	Biochemistry	W. H. Freeman	8th/2015	978- 1464126116	1872

Nutritional And Clinical Biochemistry

L	Т	Р	Total Credits
4	0	0	4

Course objective: To provide information on concept of nutrition & health and understand the physiological and biochemical significance of micronutrients and macronutrients. To provide understanding and applied knowledge to the theory and practice of clinical biochemistry.

	Teaching Hours
Unit I: Fundamentals of Human Nutrition and Metabolism	9 hrs
Defining Nutrition, role of nutrients. Unit of energy, Biological oxidation of foodstuff ,Physiological forms of energy, Caloric value & energy content of various foods. Measurement of energy expenditure: Direct and indirect Calorimetery. Respiratory quotient (RQ), Protein and non-protein RQ and its calculations. Basal metabolic rate (BMR: Factors affecting BMR, calculation of BMR. Specific dynamic of food, Energy requirement in various physiological and pathological conditions. Thermogenesis and the effect in various physiological process.Theory of satiety and hunger. Calorie malnutrition and over nutrition. Starvation-history, morbid Anatomy, changes in its body composition, metabolic , stores of energy and survival. Obesity-aeriology, assessment of clinical features, treatment, diet, effect of exercise.	
Unit II: Nutritional Biochemistry: Macronutrients and Their Metabolic Roles	18 hrs
Proteins: - Sources and chemical nature, Review of functions of proteins in the body. Essential and Nonessential amino acids , protein as a source of energy, protein reserves, Digestion and absorption. Nitrogen balance and various factors affecting Nitrogen balance. Endogenous and exogenous fecal and urinary nitrogen and their importance. Methods of estimating endogenous nitrogen. Dynamic state of Nitrogen metabolism. Methods for assessment of quality of proteins, Protein requirements for various age groups. Individual amino acid deficiency. Amino acid imbalance, antagonism and toxicity. Role of dipeptides in clinical nutrition. Carbohydrates: Review functions of carbohydrates. Digestion, absorption ,utilization and storage, hormonal regulation of blood glucose. Dietary requirements and source of carbohydrates, Dietary fibres, various types of dietary fibres, chemistry of fibres, physical properties, dietary source, role of fibre in lipid metabolism, colon function, blood glucose level and GI tract functions. Dietary Fats:- Review of classification, sources, functions, digestion, absorption, utilization and storage. Essential Fatty Acids; Functions of EFA, RDA, – excess and deficiency of EFA. Lipotropic factors, Fibres in preventing cancer, diabetes, coronary heart disease. Possible adverse effects. Role of n-3 PUFAs in pathogenesis of various diseases, Effects of n-3 PUFA on liproproteins, thrmoboxane, prostaglandins and leukotrienes, Importance of n-3/n-6 PUFA ratio.	98

Unit III: Daignostic Enzymes and Organ function Tests	9 hrs
Enzyme assay in serum/plasma, urine, and cells Clinically important enzymes Use of isoenzymes in diagnosis. Assessment and clinical manifestation of hepatic, renal, gastrointestinal, and pancreatic functions.	
Unit IV: Disorders of Metabolism	18 hrs
Carbohydrates- Diabetes mellitus, Glycogen Storage diseases, galactosemia, pentosuria. Amino Acids- Disorders of glycine, sulfur containing amino acids, aromatic amino acids, histidine, branched chain amino acids and proline, disorders of propionate and methylmalonate metabolism. Disorders in urea biosynthesis.	

Leaning outcomes: Students by the end of the course will-

- 1. Students will understand the roles of proteins, carbohydrates, and fats in human metabolism.
- 2. They will analyze how macronutrients influence energy balance and metabolic health.
- 3. Through assessments, students will apply nutritional principles to promote health and prevent disease.
- 4. They will integrate this knowledge into clinical practice for personalized dietary interventions.