
Quantitative Assessment of Inheritance Hierarchies

for Aspect Oriented Software Development using a

proposed Aspect Inheritance Reusability Model
Senthil Velan S

Department of Computer Science and Engineering

Amity University

Dubai, UAE

svsugana@gmail.com

Abstract—Aspect Oriented Software Development (AOSD)

is a promising methodology for efficiently capturing the

crosscutting functionalities (concerns) into modular units called

aspects, thereby reducing maintainability, and increasing

reusability and ease of software evolution. Since inheritance of

classes and aspects plays a vital role in defining the units of

encapsulation, it is essential that the impact of introducing

inheritance in AOSD need to be quantitatively captured using

core design level metrics and mapped onto higher level quality

attributes. In this research work, a new set of metrics have been

proposed to quantify the impact of using multi-level inheritance

hierarchies in an Aspect Oriented software. A model that

captures the reusability using inheritance of aspects has been

used for defining and applying the proposed metrics and later

relates them onto higher level quality attributes. Further, the

proposed metrics and model have been applied to AspectJ

versions of an SOA based case study application. Based on the

measurement, it was inferred that aspectization has improved

the higher level quality attributes of reusability, modularity and

maintainability of the case study over its versions.

Keywords—AOSD, AOP, Multi-Level Inheritance, AOP

Metrics

I. INTRODUCTION

Aspect Oriented Software Development (AOSD) [1]
methodology lets designers and eventually programmers to
neatly encapsulate cross-cutting concerns. This method of
encapsulation was initially proposed by Gregor Kiczales [2]
and quite a number of research work have been attempted to
measure its quality. AOSD allows the software developer to
isolate the units of functionality that cuts across the basic
functionalities of the system under development. These
isolated functionalities are encapsulated into well-defined
units called Aspects. Aspects are the fundamental units in this
novel software development methodology.

Inheritance is a very common and basic notion which can
be used to extend or redefine the functionalities encapsulated
in any object oriented software. Almost all software
developed using Object Oriented Software Development
(OOSD) methodology uses inheritance in various forms for
the efficient utilization of encapsulated entities. There are also
several issues related to inheritance [3] that have been well
debated in the literature. For example, multiple inheritance is
considered to create a lot of complexities compared to its
utility which is accepted in large by the research community.
This is evident from the statement "Multiple Inheritance is
good, but there is no good way to do it" written by Steven
Cook in OOPSLA '87 [4]. Hence, the usage and impact of
inheritance in any methodology need be thoroughly studied.

The concept of inheritance can also be used in
development of software using AOSD methodology. It
introduces additional set of elements like abstract and concrete
aspects. These elements are very similar to abstract, base and
extended classes available in object-oriented software
development. Extension of different kinds of aspects and
classes have their own limitations.

The consequence of applying the concept of inheritance to
AOSD methodology need to be further explored. This will
enable the designer to understand its impact towards the
higher level quality attributes. Hence, a set of metrics is
required to measure the effect of inheritance in AOSD
methodology. This research work proposes a set of related
metrics and a third one to measure the impact of inheritance
in classes and aspects and correlates them with the higher level
quality attributes.

The rest of the paper is organized as follows: Section II
expands the existing work in the literature about the
measurement of inheritance in Aspect Oriented Programming
(AOP). The reusability model in AOP is explained in Section
III. The new set of metrics proposed in this research work is
introduced in Section IV. Section V lists the core objectives of
the research explained in this article. The metrics are applied
on to a case study application which has been explained in
Section VI. The metrics values obtained by applying them on
to the case study application is explained in Section VII.
Section VIII discusses the inferences on applying the
proposed metrics on the case study application. Finally,
Section IX concludes and provides pointers for the future
scope of this research work.

II. EXISTING WORK

It is found in the literature that very little has been done in
addressing the complexities introduced by inheritance in
AOSD. Most of the authors have only proposed different types
of coupling that are introduced while weaving aspects to the
classes. Some authors have even measured it and explained
about the effect of aspectization.

Zhao [5] has defined a new metric called Aspect-
Inheritance Dependence Measure that counts the
dependencies between an aspect and all the ancestor classes of
the aspect. The metric is specified and categorized according
to the mathematical properties proposed by Briand et al., [6]
for coupling measures of object-oriented systems. It is also
stated in the conclusion that the influence of aspect and class
inheritances need to be explored.

Maximilian et. al., [7] has presented methods for
programmers to automatically check the impact of

introductions and hierarchy modifications on existing
programs. The author also points out the impact of dynamic
or binding interference emerging out by using the specified
AspectJ features. A prototype has been developed and
reasonable results were obtained, but the implementation of
the impact analysis and extension of the set of analyzable
programs was not done.

A composition model has been proposed by Havinga et.
al., [8] which can be used to express object and aspect
compositions including various forms of inheritance and
delegation. The author proposed a novel composition model
and has implemented single, multiple and Beta-style
inheritance and delegation of calls to the right object during
composition.

Vinobha et. al., [10] have defined a new set of metrics
capturing the occurrence of different forms inheritance in both
OO and AO software. A proposed evaluation model has been
applied on a multi-version case study application. The results
found using a tool for measurement have shown encouraging
results of introducing inheritable entities in AO versions of the
software. Similarly, a weighted set of metrics extended from
the CK Metrics Suite [9] will throw additional insight on the
effect of introducing inheritance in AOP. Senthil Velan [11]
has extended this work by calculating the complexity of
computational intelligence for a multi-version AspectJ
application.

III. THE PROPOSED AIRM MODEL

In order to understand the impact of using inheritance in
AOP, a simple model is required to capture the interactions
between the design elements of the system. The elements of
the system in focus are the abstract and the concrete aspects as
well as the abstract and concrete classes. To capture the
interactions that happen between these different elements an
inheritance relationship model is proposed for the
specification of metrics. Consider the inheritance model
specified in Fig. 1.

IV. PROPOSED METRICS

In order to measure the effect of applying inheritance in
AOSD, it must be possible to state the specific quantitative

units of measurement. Metrics that precisely captures the
inheritance effect in AOSD is required to be defined and used.

Consider the following units before specifying the metrics:

Let N1 be the number of join points of all pointcuts only in
class C,
Let N2 be the number of join points of all pointcuts in the
ancestor classes of class C, and
Let N3 be the number of join points of all pointcuts in the
concrete and ancestor aspects woven on class C.

The following are the first set of metrics proposed for
measuring the impact of inheritance in AOSD:

Effect of Inheritance of classes in class C,

𝐸𝑜𝐼𝑜(𝐶) =
𝑁1

𝑁1 + 𝑁2

 (1)

Effect of Inheritance of aspects in aspect A,

𝐸𝑜𝐼𝑜(𝐴) =
𝑁1

𝑁1 + 𝑁3

 (2)

The third metric is an extension of Depth of Inheritance
(DIT) of the CK Metric Suite [9]. This metric is modified in
order to include the effect of inheritance in AOSD.

Consider the following units of encapsulation before
specifying the metric:

Let η1 be the number of ancestor classes that can affect class

C, and

Let η2 be the number of ancestor aspects that can affect an
aspect A and directly used by class C.

The following is the third metric proposed for measuring
the impact of inheritance in AOSD:

Class Aspect Ratio for Depth of Inheritance,

𝐶𝐴𝑅𝑜𝐷𝐼𝑇 =
𝜂1

𝜂2

 (3)

Fig. 1. Aspect Inheritance Reusability Model (AIRM)

V. RESEARCH QUESTION

This objective of this research work has been to explore
the multiple facets of the notion of inheritance and
composition in the context of AOSD, quantitatively capture
them with appropriate new design-level metrics and map them
to higher level quality attributes such as reusability,
maintainability and extensibility.

Based on the AIRM Model shown in Fig. 1, the following
set of interactions can be identified:

1) The effect of having multiple concrete and abstract
aspects whose pointcuts advice the join points present
only in the derived class, class C.

2) The effect of having multiple concrete aspects whose
pointcuts advice the join points present only in the base
classes of the derived class C.

3) The effect of having multiple abstract aspects whose
pointcuts advice the join points present only in the base
classes of the derived class C.

The Depth of Inheritance Tree (DIT) proposed in CK
Metrics Suite [9] can also be extended to AOSD by measuring
and comparing the following interactions:

1) The effect of class inheritance on the derived class C.

2) The effect of aspect inheritance on the derived class C.

VI. CASE STUDY APPLICATION

Quantitative assessment of the proposed metrics requires
a testbed for its application. In order to do so, a multi-version
SOA based case study application is considered, which was
developed and used in our previous work. The architecture of
the case study application is shown in Fig. 2.

Fig. 2. Concerns in the versions of University Automation System (UAS)

Five incremental versions of SOA based University
Automation System (UAS) case study have been developed
using Java and AspectJ programming languages. Initially,
new concerns have been added in the Java versions and later
the cross-cutting concerns in the Java versions have been
refactored and modelled as aspects in the AspectJ versions.
The first version UAS J 1.0 and its equivalent UAS AJ 1.0 do
not have any cross-cutting concerns modelled in their design

and implementation. Second version of the case study
contains 12 core concerns and 2 cross-cutting concerns
modelled in the respective classes in Java version and aspects
in the AspectJ version. The fifth version of the case study is
modelled with 34 core concerns and 5 cross-cutting concerns.

Inheritance of classes and aspects are modelled using
classes and aspects in the respective versions of the case study
application. The cross-cutting concerns of logging and
exception handling mechanisms have been modelled using
abstract and concrete classes in the Java version and abstract
and concrete aspects in the AspectJ versions of UAS. The
abstract classes and aspects are extended using multi-level
inheritance hierarchies in the respective versions of the case
study application.

VII. MEASURED VALUES OF PROPOSED METRICS

TABLE I. MEASURED METRIC VALUES FOR ASPECTJ (UAS AJ) VERSIONS

OF UAS APPLICATION

Version 𝐸𝑜𝐼𝑜(𝐶) 𝐸𝑜𝐼𝑜(𝐴) 𝐶𝐴𝑅𝑜𝐷𝐼𝑇

UAS AJ 1.0 0 0 0

UAS AJ 1.1 0.5 1 1

UAS AJ 1.2 0.5 0.5 1

UAS AJ 1.3 0.36 0.57 0.66

UAS AJ 1.4 0.35 0.55 0.55

Three new metrics have been proposed to understand the
effect of using multi-level Inheritance in AOP using AspectJ
programming. In order to understand its impact the proposed
metrics have been applied on the AspectJ versions of the UAS
case study application. The measured values of the proposed
metrics are tabulated in Table I. Measured values for all the
three metrics across versions of the UAS AJ cases study
application is available in the following Table.

Measurements have been made only for the AspectJ (UAS
AJ) versions of the case study application. The reason behind
the identifiable measurement is that all the proposed metrics
has primarily considered only the constructs defined by AOP
in AspectJ programming language. The constructs considered
in the measurement are join points and pointcuts well defined
in the hierarchy during multi-level inheritance.

VIII. DISCUSSION ON MEASUREMENTS

In order to understand the effect of using multi-level
inheritance in AOP, a clear understanding of the quantitative
assessment is required by the software designers and
modelers. To enable such an understanding, the measured
values of the proposed metrics have been pictorially
represented as a bar graph in Fig. 3

The following inferences are derived based on the
quantitative assessment of the case study using the proposed
metrics:

• Values of the EoIo(C) metric decreases over versions of
UAS AJ application. This has happened since the
inheritance hierarchy based cross-cutting functionalities

have been refactored and modelled as inheritance
hierarchies. Since AOP was introduced to improve
software modularity, these aspects are now able to
improve the overall modularity of the UAS AJ over its
versions. This naturally improves the maintainability
and reusability of modular elements in the case study
application.

• Notably, the values of EoIo(A) metric increases over
versions of UAS AJ case study application. The reason
behind this is the increase in the number of inheritance
hierarchies of aspects. The inheritance hierarchies have
been modelled as tangled and scattered functionalities in
Java (UAS J) versions of the case study application.
Aspectization has helped in modularizing the cross-
cutting inheritance hierarchies from Java to AspectJ
versions. The effect of aspectization has increased the
modularity of the case study application

• The third metric, CARoDIT, decreases over AspectJ
versions case study application. The reason behind this
is the initial versions are modeled with lesser number of
inheritance hierarchies which is spread equally in classes
and aspects. The last two versions of the case study are
modelled with logging and exception handling cross-
cutting functionalities. When these concerns are
modelled in AspectJ, the number of inheritance
hierarchies modelled as aspects increases and thereby
decreasing the value of the metric. Modelling the
functionalities in this manner improves the modularity
and reusability of the software.

In an overall point of view, the aspectized versions of the
UAS case study has shown improvement in the higher level
quality attributes, such as, reusability, maintainability and
modularity.

Fig. 3. Comparison of proposed metrics over UAS AJ versions

IX. CONCLUSION AND FUTURE WORK

Object Oriented Software Development (OOSD)
inherently provides capabilities and constructs to design the
modular entities for reusability. AOSD provides mechanisms
for the clear separation of cross-cutting concerns and the
tangled and scattered inheritance hierarchies in OO can be

aspectized to improve the modularity of the software. Hence,
it has become necessary to study the impact of using
inheritance hierarchies for software modelled using AOSD.

Focused on the need stated in the last paragraph, it is
necessary to quantitatively evaluate the effect of modelling
inheritance hierarchies in versions of software developed
using AOP. In this research, a new set of specific metrics
focusing on quantifying inheritance hierarchies have been
defined and applied on five AspectJ versions of the case study.
The measurements have been used to understand the effect of
aspectizing OO software over its versions onto higher level
quality attributes.

Based on the quantitative measurement it was inferred that
using inheritance in AOP has improved the modularity,
maintainability and reusability of the case study application
over its versions. Since the application was modelled using
multi-level inheritance a natural extension of this work is to
understand the effect of using different types of inheritance
hierarchies modelled in the case study. Further, the proposed
metrics will also be applied in more case study application to
understand more about domain specific inferences.

REFERENCES

[1] Henrique Rebêlo and Gary T. Leavens, “Aspect-Oriented
Programming Reloaded,” In Proceedings of the 21st Brazilian
Symposium on Programming Languages (SBLP 2017), ACM, New
York, NY, USA.

[2] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C. V.,
Loingtier J. M., and Irwin J., “Aspect-Oriented Programming,” In
European Conference on Object Oriented Programming, pp. 220-242,
1997.

[3] Taivalsaari, Antero, “On the notion of inheritance,” ACM Computing
Surveys (CSUR), Vol. 28, No. 3, pp. 438-479, 1996.

[4] Jos Warmer, John Hogg, Steve Cook and Bran Selic, “Experience with
Formal Specification of CMM and UML,” Object-Oriented
Technology, ECOOP'97 Workshop Reader, ECOOP'97 Workshops,
pp. 216-220, 1997.

[5] Jianjun Zhao, “Measuring Coupling in Aspect-Oriented Systems,” In
10th International Software Metrics Symposium (METRICS'2004),
(Late Breaking Paper), Chicago, USA, September 14-16, 2004.

[6] Briand L. C., J. Daly and J. Wuest., “A Unified Framework for
Coupling Measurement in Object-Oriented Systems,” IEEE
Transactions on Software Engineering, Vol.25, No.1, pp. 91-121,
January/February 1999.

[7] Maximilian Störzer, Jens Krinke, “Interference Analysis of AspectJ
Programs,” 3rd German Workshop on Aspect-Oriented Software
Development, Essen, Germany, March 2003.

[8] Wilke Havinga, Lodewijk Bergmans Mehmet Aksit, “A model for
composable composition operators: Expressing object and aspect
compositions with first-class operators,” In Proceedings of 9th
International Conference on Aspect-Oriented Software Development,
AOSD '10, ACM Press, 145-156, Rennes and Saint-Malo, France,
2010.

[9] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering, Vol.
20, Issue 6, June, 1994, pp. 476-493, IEEE Press, Piscataway, NJ,
USA.

[10] Vinobha A., Senthil Velan S. and Babu C., “Evaluation of reusability
in aspect oriented software using inheritance metrics,” 2014 IEEE
International Conference on Advanced Communications, Control and
Computing Technologies, Ramanathapuram, 2014, pp. 1715-1722.

[11] Senthil Velan S., “Investigating the Complexity of Computational
Intelligence using the Levels of Inheritance in an AOP based Software,
” 2019 Advances in Science and Engineering Technology International
Conferences (ASET 2019), Dubai, 2019.

