
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Design of Robust Controller for an Uncertain System 

described by Unstructured Uncertainty Model using 

Small Gain Theorem 

Shreesha Chokkadi 

Professor in Instrumentation and Control Engineering 

Manipal Institute of Technology 

Manipal Academy of Higher Education  

Manipal, India 

shreesha.c@manipal.edu  

Supanna S. Kumar  

Department of Electrical and Electronics Engineering 

NMAM Institute of Technology  

Nitte, India 

supanna2016@gmail.com  

 

Abstract-- A simple and easy technique is used to design a 

robust Proportional Integral Derivative (PID)/ Proportional 

Integral (PI) controller for an uncertain system described by 

unstructured uncertainty model. The controller design is based 

on Small Gain theorem and it guarantees closed loop stability 

for input variations across its full working range. The 

uncertain plant under different working ranges is described by 

a family of corresponding transfer functions. In this paper 

design of a robust controller has been demonstrated for a 

warm air drying chamber. Closed loop step response and 

frequency response plots are shown to prove that the proposed 

controller provides robust operation of the chosen uncertain 

plant. Comparison of the results with those obtained from 

other design methods shows that the proposed controller 

design methodology proves to be a better option. 
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I. INTRODUCTION 

A mathematical model used to describe any physical 
system is always only an approximate one since many 
factors such as reduction in system order, time delay, non-
linearity, parameter variations due to disturbances etc. are 
ignored in the process of model simplification. This may 
result in modeling error and unpredictable plant behavior 
which necessitates the need for uncertainty modeling. 
Uncertainty due to dynamic perturbations is a result of 
deviation of the model from the actual system dynamics and 
uncertainty due to disturbance signals is because of input and 
output disturbances.  

Unstructured uncertainty uses a single perturbation block 
to represent dynamic perturbations such as those due to 
neglected plant dynamics or unmodeled high frequency 
dynamics. Representation of this type of uncertainty is 
possible in many ways.  

Additive perturbation model is represented by the 
equation )()()( 0 ssGsGp += and the equation 

)](1)[()( 0 ssGsGp += represents the multiplicative 

perturbation model. )(),( 0 sGsGp and )(s denote the actual 

perturbed plant dynamics, the nominal plant model and the 
uncertainty model respectively. The block )(s  is normally 

bounded i.e. ],0[)()]([   jj where   

represents the largest singular value of the matrix and )(  j  

is a known scalar transfer function[1]. Generally, 
conventional controller design methodologies require an 
accurate plant model to achieve the desired performance. 
Since practical systems which are sensitive to parameter 
variations result in model uncertainty, designing a controller 
that stabilizes and meets performance requirements for such 

systems poses a challenge. Proportional Integral Derivative 
(PID) controllers have gained popularity in industries since 
they are easily implementable. However, since they make 
use of heuristic tuning methods such as Zeigler-Nichols, they 
lack generality [2].  

Designing a Proportional Integral (PI)/PID controller for 
uncertain systems in a simple way using Small Gain theorem 
has been proposed in [3]. [4] presents a simple procedure for 
PID controller design for nonlinear uncertain systems of 
second order. For uncertain plants with parameters bounded, 
Kharitonov theorem based design of a robust PID controller 
has been demonstrated in [5]. In [6], design of robust PI 
controller using Kharitonov theorem has been carried out for 
an interval plant with bounded but unknown time delay. A 
robustly stabilizing PID controller for an oblique wing 
aircraft with parameters having interval uncertainty has been 
designed using Kharitonov theorem in [7]. In [8], a robust 
PID controller design methodology based on Kharitonov 
theorem is proposed for an uncertain first order plus time 
delay system with gain and phase margin constraints. A 
robust PID controller using second order sliding mode 
technique is designed for unmatched uncertain systems under 
the influence of disturbance signals [9]. Control problem has 
been solved as an optimization problem using H∞ framework 
in [10], [11], [12], [13]. 

Robust controllers have been designed using the D curves 
method for a linear interval model and using the D partition 
method for an affine model of an uncertain warm air drying 
chamber in [14]. These approaches are tedious and time 
consuming since they are graphical methods based on 
Kharitonov theorem. A simple frequency domain based 
approach to design a robust PID/PI controller for an 
industrial warm air drying chamber described by a family of 
transfer functions has been proposed in this article. 

II. DESIGN METHODOLOGY 

  Small Gain theorem classifies a closed loop system as 
robustly stable  if the magnitude of the open loop gain is less 

than 1. In other words, if ],0[1)(  sL  then the system 

will be closed loop stable. A family of stable transfer 
functions )(sGk   is used to describe an uncertain plant to be 

controlled. Then the plant can be represented by an additive 
unstructured uncertainty model as shown in Fig. 1. The 
additive unstructured uncertainty model of the uncertain 
plant is given by, 

)().()()( 0 ssWsGsG a +=                                                      () 



 
Fig. 1. Closed loop system with plant described by additive uncertainty 

model. 

where )(0 sG  is the nominal transfer function,  )(sWa  is the 

additive weighting transfer function and )(s  is a set of 

transfer functions such that their peak magnitudes are less 
than or equal to 1 for all frequencies. If 1)(  s  then, 

)()().( sWssW aa  . This implies that,  

],0[)()()( 0 − sGsGMaxsW ka                                () 

where k = 1, 2, 3... n and )(sGk is the family of stable transfer 

functions representing the uncertain system. Based on (2), a 
suitable choice of the weighting transfer function is made. 

The closed loop system shown in Fig. 1 has its 
characteristic equation as 

0)()(1 =+ sGsC                                                                    () 

Using (1) in (3), we have, 

0)]().()()[(1 0 =++ ssWsGsC a                                             () 

Rearranging, 
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Let the nominal closed loop transfer function given by, 
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be assumed stable.  

Using (6) in (5), 
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Assuming stability of nominal closed loop system, the 
nominal characteristic equation given by (3) is also stable.  

The necessary and sufficient condition for system shown 
in Fig. 1 to be stable is that (7) should be stable. Hence the 
equations 0)]()(1[ 0 =+ sGsC  and 
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condition of Small Gain theorem i.e., magnitude of gain of 
open loop should be less than one. Hence the following 
condition must be satisfied. 

],0[1
)(

)()(
).(

0

0 



sG

ssW
sM a                                          () 

Considering the worst case value of )(s , that  is, 

 ],0[1)( = s , (8) becomes, 
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Based on (9), a suitable choice for the nominal closed loop 
transfer function )(0 sM can be made as follows. Rearranging 

(6) we have, 
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Expressing the transfer functions as ratios of pertinent 
polynomials that is, relevant or appropriate numerator and 
denominator polynomials, each of the controller transfer 
functions in (10), is given by, 
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Subscripts n and d  in (11) represent the respective 

numerator and denominator polynomials of the transfer 
functions. 
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Similarly the transfer function in (6) is also expressed in 
terms of ratios of pertinent polynomials, resulting in (13). 
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Rearranging (13), 
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Let 

)(
)(

)(
0

0 sP
sC

sG

n

d =                                                                   () 

Using (15) in (14) we have, 
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Since the transfer functions in (13), (14) and (16) are 
expressed in terms of ratios of pertinent numerator and 
denominator polynomials, the numerators and denominators 
on both sides of (16) can be equated and we have, 

)()( 00 sGsM nn =                                                                 () 

)()()()( 000 sGsPsCsM ndd +=                                             () 

Using (17) in (12), controller transfer function can be written 
as, 
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Conventional PID controller transfer function is given by, 
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The choice of controller numerator and controller 
denominator polynomials are made as explained in the 
following. Rearranging (18) we have, 

)()()()( 000 sPsCsGsM dnd =−                                              () 

From (15) we have, 
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Using (21) and (22) in (19) the controller transfer function 
changes to, 
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Using PID controller conventional transfer function given by 
(20) in (23), 
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Using the notion of pertinent numerator and denominator 
polynomial representation for the transfer function, the 
numerator and denominator on either side of (24) can be 
equated. That is, equating the numerator polynomials on 
either side of (24), 

( )ipdd xsxsxsPsXsPsG ++== 2
000 )()()()(                        () 

and equating the denominator polynomials on either side of 

(24), 

sKsPsGsM nd .).()()( 000 =−                                                () 

In (25), the degree of polynomial )(0 sP is chosen such 

that it is equal to the degree of polynomial )(0 sG d  minus the 

degree of polynomial )(sX . Likewise )(0 sP  and )(sX  can 

be determined. Using (21) and (26) in (16), an expression for 
the nominal closed loop transfer function )(0 sM   is obtained 

as a function of K as in (27). 
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Now, the controller design has been transformed in to 
choosing  a suitable K such that the condition given by (9) as 
obtained through (1) to (9) is satisfied. 

With the selected value of K, the controller parameters 
are determined using (28). 
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III. CONTROLLER DESIGN FOR THE UNCERTAIN SYSTEM 

The example of warm air drying chamber used in [14] 
has been considered as an uncertain system to demonstrate 
the applicability of the proposed controller design method. 
The transfer functions for the uncertain system that have 
been obtained by identification of the step responses by 
Hudzovic method for step change in input power under five 
different ranges are, 
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The nominal model for the uncertain plant is given by, 
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A suitable choice for the weighting transfer function is 
made so as to satisfy the condition given by (2) using the 
function ltiarray2uss()in Matlab®. 
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Fig. 2 shows the frequency response of the chosen weighting 
transfer function )(sWa  and the five difference transfer 

functions ,)()( 01 sGsG − ,)()( 02 sGsG − ,)()( 03 sGsG −  

)()( 04 sGsG −  and )()( 05 sGsG − . 

From (30), it can be seen that )(0 sG d  is a third degree 

polynomial. Then from (25), it is obvious that )(0 sP  should 

be a polynomial of first degree. Hence let 1)( 10 += spsP . 

Now (25) becomes, 

 19.253101077.120232 243 +++ sss                                () 

          ))(1( 2
1 ipd xsxsxsp +++=  

Equating respective powers of s coefficients on both sides of 
(32) we obtain, 

096.2;1;804.251;19.9652 1 ==== pxxx ipd                     () 

Next,  )(0 sM  and )(/)(0 sWsG a are plotted for different 

values of K. It is found that the minimum value of K that 
satisfies the robust stability condition given by (9) is 19. If K 
is increased beyond 19, the peak overshoot decreases. Here, 
K = 60 is chosen which gives a small, maximum value of 
peak overshoot of 12.3%. For ease of choosing the value of 
K, a Matlab® program using for-loop which plots frequency 

response curves for 
)(

)(0

sW

sG

a

 and a series of curves for 

nominal closed loop gain for a range of values of K is used. 

Fig. 3 shows the frequency response of )(/)(0 sWsG a  

and )(0 sM  for 60=K . Using the chosen value of K and 

(33) in (28), the PID controller parameters are determined. 

 0167.0;9.160;2.4 === idp KKK                                 () 



 

Fig. 2. Frequency response of  aW  and 0GGk − . 

IV. SIMULATION RESULTS 

A. Comparison  with PID controller by D curves method 

The step and frequency responses of the closed loop warm 

air-drying chamber with the proposed PID controller are 

compared with those of the PID controller designed using 

the D curves method [14]. The step responses with the 

proposed PID controller and that designed using D curves 

method [14] are presented in Fig. 4. From the results 

obtained it is very clear that the proposed controller resulted 

in step responses, with less overshoot and fast settling time 

for all regions of operation respectively, which are 

quantitatively compared in Table 1. 

 
Fig. 3. Frequency response of aWG /0  and 0M . 

However the rise times lie within 12.8 seconds, which is 
higher than those for D curves method. If K is chosen such 
that the maximum rise time is 7.61 seconds then maximum 
% peak overshoot and settling times are 25.68 and 28.74 
seconds respectively which indicates a better performance.   

Fig. 5 shows the corresponding frequency responses with 
the proposed PID controller giving a higher value of 
minimum phase margin of 55.9 degrees (for G3) compared to 
that with D curves method giving a minimum phase margin 
of 34 degrees. 

TABLE I.  COMPARISON BETWEEN PROPOSED PID CONTROLLER AND 

PID CONTROLLER BY D CURVES METHOD [14] 

Time response specifications 
Proposed PID 

controller 
PID controller by 
D curves method 

Maximum rise time (sec) 12.80 7.61 

Maximum % peak overshoot 12.31 47.33 

Maximum settling time (sec) 27.09 64.01 

 

 
Fig. 4. Step response with proposed PID controller and with PID controller 

by D curves method [14]. 

 

 
Fig. 5. Frequency response with the proposed PID controller (K=60).  

 

B. Comparison with PI controller by D curves method 

[14] shows the design of a PI controller by D curves 
method with a demanded phase margin of 70 degrees. Hence 
a PI controller is designed using the proposed methodology 
based on Small Gain theorem to achieve this phase margin. 
K=1900 satisfies the above design criteria. The parameters of 
PI controller are determined as, 

000526.0;1077.0 == ip KK                                             () 

Fig. 6 shows the step responses obtained with the 
proposed PI controller and those with the PI controller by D 
curves method [14]. Table 2 shows that the proposed 
controller gives a better time response with improved peak 
over shoot and settling time compared with marginally  
higher rise time.  

TABLE II.  COMPARISON BETWEEN PROPOSED PI CONTROLLER AND PI 
CONTROLLER BY D CURVES METHOD [14] 

Time response specifications 
Proposed PI 

controller 
PI controller by D 

curves method 

Maximum rise time (sec) 420.98 1523.20 

Maximum % peak overshoot 2.30 0.00 

Maximum settling time (sec) 680.80 3535.30 



C. Comparison with PID controller by D partition 

approach 

Simulation of the PID controller designed by D partition 
approach as in [14] gives a minimum phase margin of 45.8 
degrees. Now the parameter K is chosen such that this 
minimum phase margin requirement is achieved in addition 
to a reduced peak overshoot. K=120 satisfies this criteria. 
The PID controller parameters determined are given by, 

 0083.0;4349.80;0984.2 === idp KKK                        () 

 
Fig. 6. Step response with proposed PI controller and with PI controller by 
D curves method. 

 
Fig. 7 shows improved step responses with the proposed 

PID controller as compared to that with the PID controller by 
D partition approach.  

Table 3 shows that the proposed controller gives a better 
time response that is, it is fast, has a small % peak overshoot 
and settles down quickly as compared to the PID controller 
by D partition approach.  

 

Fig. 7. Step response with proposed PID controller and PID controller by D 

partition approach. 

TABLE III.  COMPARISON BETWEEN PROPOSED PID CONTROLLER AND 

PID CONTROLLER BY D PARTITION APPROACH [14] 

Time response specifications 
Proposed PID 

controller 

PID controller by 
D partition 
approach 

Maximum rise time (sec) 28.44 118.14 

Maximum % peak overshoot 1.66 24.55 

Maximum settling time (sec) 59.86 490.38 

V. CONCLUSION 

The paper presented a simple and easy to design 
methodology of robust PID/PI controller using small gain 
theorem for systems having unstructured uncertainty. The 
proposed controller design method has been applied to a 
warm air-drying chamber presented in [14] successfully. The 
results of plant operation for a temperature change between 0 
and 100 % of the maximum working range show that the 
designed controller results in robust performance for all the 
five operating regions. The proposed controller’s 
performance is better with respect to time and frequency 
responses compared to the D curves and D partition methods. 
However the proposed technique can be applied only to 
uncertain systems whose nominal model transfer function is 
stable. The Small Gain theorem condition ensures that the 
effect of perturbations occurring in the uncertain system is 
eliminated and results in stable closed loop operation. 
Further, this controller design technique is applicable only to 
uncertain systems with order less than three. Also, the 
proposed method does not give optimal parameters. However 
it is shown that it results in both better overshoot and settling 
time. As a future scope, the proposed method may be 
modified to obtain optimal parameters. 
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