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Abstract—Differential Evolution is a really challenging 

algorithm in the field of computational intelligence and has 

proved its worth in solving various real-world optimization 

problems. The algorithm since its inception has been enhanced 

to improve its competitiveness and various new versions have 

been designed. In present work, the properties of an enhanced 

version of DE namely LSHADE algorithm are enhanced and 

new version namely SALSHADE is proposed. The newly 

proposed version consists of three major modifications that is, i) 

exponentially decreasing crossover rate, ii) linearly decreasing 

scaling factor and iii) frequency component is enhanced by 

using L/evy distributed step size. These three modifications have 

been added and experimental analysis is done on CEC2017 

benchmark problems to prove its worth. The new proposed 

SALSHADE algorithm is compared with SaDE, JADE, 

SHADE, MVMO, CVsin, CV1.0, LSHADEcnEpSin and other 

algorithms. Further, experimental results show that 

SALSHADE is highly competitive and is a potential candidate 

for becoming state-of-the-art. 

Keywords—Differential evolution, CEC2017 benchmark 

problems, numerical optimization, LSHADE algorithm 

I. INTRODUCTION 

Differential evolution (DE) algorithm is a well-known 

algorithm and has proved its worth from the past two decades. 

The algorithm was proposed by Storn and Price [1] and since 

its inception, has shown significant performance over its 

other counterparts [2], [4]. The algorithm is based on 

Darwinian theory of natural selection and mainly consists of 

three important phases. These include crossover which is 

governed by a crossover rate (CR) and scaling factor (F), 

mutation and finally the selection process which helps in 

deciding the best solution. The algorithm starts by initializing 

a random solution from the population within a particular 

search range. Note that the search space defined in this case 

corresponds to a particular problem having certain dimension 

having a defined search region. The next step is to perform 

crossover and mutation operation. Both of these operations 

are governed by two major parameters, namely crossover rate 

and scaling factor. The next step is comparison of the newly 

generated solution with the help of certain selection 

technique. Finally, the best solution is found at the end of the 

generations. 

Now if we see the total computational complexity of DE 

algorithm, we can say that CR and F are two major 

parameters of DE and both these parameters define how 

effective is the algorithm. Population size (N) is also a major 

role in deciding the total number of function evaluations 

required for a particular problem. Also, it has been found that 

all these parameters pose very challenging aspect in the 

performance of DE. A small fluctuation in the value of these 

parameters can change the results in a drastic way. So proper 

care should be taken while choosing these parameters to 

make the algorithm fit for application under test. In 

comparison with respect to various problems under test, DE 

algorithm has been found to efficient for high dimension, ill-

conditioning, non-separability and multi-dimensional 

problems [5], [6]. The algorithm has also been found to be 

highly effective in solving various real-world problems such 

asremote sensing technology [7], flow job shop scheduling 

[8], space and satellite communication [9] and others [10], 

[11]. 

As far as the existing literature is concerned, the DE 

algorithm has been enhanced in its original form and various 

new versions have been proposed. For performance 

evaluation, these algorithms have been tested on various 

recent benchmark problems. These benchmarks include 

highly challenging test functions which are scalable, 

illdirectional, multimodal, hybrid and composite in nature. 

The most challenging dataset till date is the CEC2017 

benchmark problems [12]. Apart from this, the most recent 

introduction is the CEC2017 benchmark set which is under 

test for CEC 2019 competitions [13]. About CEC 

competitions, these competitions are organized every year at 

the Congress on Evolutionary computing conference and 

enhanced versions of most of the major algorithms in 

literature are used for the evaluation of these test functions. 

The best among all the proposed version wins. Based on that 

JADE algorithm [14], which is one of the modified versions 

of DE, has been adapted for CEC benchmark functions. 

Another modification of JADE based on adaptive CR and F 

namely SHADE [15] was applied and was declared third 

winner for CEC2013 single objective benchmark functions. 

In present work LSHADE [16] which is an adaptation of 

SHADE algorithm having adaptive population of LSHADE 

algorithm. The LSHADE-cnEpSin algorithm employed these 

techniques to design a new adaptive coordinate system and 

hence selects crossover rate in an organized manner. size is 

used. The algorithm in its introduction was tested on 

CEC2014 benchmark problems and was declared in the same 

competition during CEC 2014 conference. LSHADE-

cnEpSin [17] was further proposed based on euclidean 



distance and covariance matrix-based learning as a further 

modification. 

From the literature it has been found that a lot of work 

has been proposed to improve its performance. When we 

compare the same in context to the parameters, it has been 

found that DE algorithm is highly dependent on the choice of 

parameters used and more work is required to be done in this 

domain [6]. In the present work, an adaptation of LSHADE 

algorithm namely LSHADE-cnEpSin algorithm has been 

modified to make it purely self-adaptive. This new algorithm 

introduced include three major modifications. The first two 

modifications are in the CR and F while the third 

modification is in the freq component. Here CR is adapted by 

using exponentially decreasing crossover rate, F is reduced 

by using linearly decreasing function in the range of [2; 0] 

and freq is adapted by using levy flight-based step size [18]. 

The major reason for these modifications is to introduce 

adaptive properties in the LSHADE algorithm and make it 

self-adaptive, so that no parameter tuning is required before 

the algorithm is run for a particular set of problems. 

In order to test the performance of the proposed 

approach, it is test on CEC2017 benchmark problems, the 

proposed algorithm is compared with various state-of-the-art 

algorithms already prevalent in literature such as JADE [14], 

SHADE [15], LSHADE [16],LSHADE-cnEpSin [17], self-

adaptive differential evolution (SaDE) [20], united Multi 

operator Evolution algorithm-II (UMOEAsII) [21], MVMO 

[22], CV1.0 [23] and CVnew [24]. Statistical results have 

also been performed to check the significant performance of 

SALSHADE algorithm. When seen from the result section, it 

is found that SALSHADE algorithm provide highly 

competitive results and is performance is better than almost 

all the major algorithms under evaluation. 

In terms of outline, the paper is organized into four 

sections, where the first section deals with the introductory 

literature of DE and needs of the proposal. The second section 

details about the basics of proposed approach along with the 

justification on each of the modification added. The third 

section elaborates the experimental results and discussion 

whereas in the final section important conclusions regarding 

the proposal are drawn. 

II. PROPOSED ALGORITHM 

In this section, the theoretical details of the new proposed 

algorithm SALSHADE are presented. The algorithm consists 

of three modifications namely adaptive exponential 

decreasing crossover rate, adaptive linearly decreasing 

scaling factor and adaptive L/evy flights based freq 

component. The algorithm starts by random initialization of 

a certain population N and the general equation for this is 

given by (1) 

 

where D is dimension size of parametric value j for ith search 

agent. The parameter a is in the range of [0,1] and xmin and 

xmax are the lower and upper bounds of the test problem. The 

second step is mutation and here JADE mutation using 

current/to/best strategy is used and is given by Eq. (2) 

 

where vi;g is the new solution from N; xr1; g and xr2; g are 

random numbers; xpbest; g is the personal best for gth 

generation. Here it should be noted that in order to remove 

the worst agents from the population, an archive is also 

initialized which keep only the best-found solutions and 

eliminates the worst ones. Here the scaling factor F is adapted 

by using linearly decreasing function in the range of [2,0] 

[19]. The reason for the use of this adaptive F is that a larger 

value of F is required during the initial stages helping the 

algorithm in providing explorative tendencies and during the 

final stages, the value is decreased so that the algorithm starts 

moving towards the exploitative phase. The general equation 

for linearly decreasing distribution for this case is given by 

 

Here the major parameters are bi which is a linearly 

decreasing function in the range of [2,0]. All the values have 

been taken after careful investigation and thorough study of 

existing literature [18]. The crossover rate CR is the second 

parameter which acts as the deciding factor for controlling 

the extent of exploration and exploitation. In present case an 

exponential decreasing crossover rate CR is used. The reason 

for the use of this distribution is that it helps the algorithm in 

converging slowly during the initial stages and faster 

convergence during the final generations. The general 

equation for this distribution is given by 

 

where CRmax and CRmin are chosen in the range of [0,1], g 

is the current generation and gmax is the maximum number 

of generations. At the end of the generations, the memory or 

the archive is updated. Mainly the archive is created in order 

to store the information of the previous generation. Also, it 

should be noted that the values of F and CR are also stored in 

the archive for use in the next generation. The third 

modification is added in the freq component of the LSHADE 

algorithm. This component is added to F component for 

second half of the iterations. The general equation for this 

modification are given by equation (5). 

 

where Г (λ) is gamma function and the value of λ is equal to 

1.5, N is random number in the range of [0,1]. Here it should 

be noted that two mutation strategies are adapted, that is, for 



first half of the population we use linearly decreasing F and 

for the other half, freq based F is used as given in 

LSHADEcnEpSin. Apart from these modifications, a linear 

population size reduction as in LSHADE-EpSin is also 

used.The general equation for such adaptation is given by 

 

where values for Nmax and Nmin are set to 18 x D and 4, 

respectively and corresponds to the maximum and minimum 

population sizes respectively, with respect to the maximum 

number of function evaluations FEsmax in every iteration. 

The major reason for adding all these modifications is to 

dervie an adaptive version of LSHADE algorithm, so that 

minimum number of function evaluations can be used and the 

computational complexity can be reduced. In the next section 

results and discussion are presented. 

III. EXPERIMENTAL RESULTS 

In this section experimental results are presented. The 

section is divided into five subsection, in the first section 

details about the CEC2017 benchmark problems are defined. 

In the next subsection, parameter settings pertaining to the 

proposed algorithms and algorithms under comparison such 

as SaDE, JADE, SHADE and others are presented. In the 

third subsection, the statistical results of 10D, 30D and 50D 

are presented where D is the dimension size of the problem 

under test. In the final section, the results in comparison to 

the other state-of-the-art algorithms are presented. 

A. Numerical Benchmarks and PC Configuration 

For testing the algorithm for complexity and performance 

parameters, the proposed SALSHADE algorithm is tested on 

CEC2017 benchmark problems. The CEC2017 benchmark 

set consists of 30 highly challenging single objective 

optimization problems. This set consists of 1 - 3 unimodal, 4 

- 10 multimodal, 11 - 20 hybrid and 21 - 30 composite 

functions. A detailed analytical study of these test function 

are presented in Ref. [12]. For performance evaluation of the 

proposed variant, the algorithm is subjected to 10D, 30D and 

50D dimensions. For CEC2019 benchmark problems, there 

are 10 optimization problems having 100 digit composition 

functions [13]. The simulations were performed on Intel 

Xeon Processor (E5- 2630) windows 10 system, 2.20GHz 

with 32 GB RAM having Matlab version 2017a. 

B. Parameter Settings 

The proposed SALSHADE doesn’t require any parameter 

to be tuned but for the parameters for other algorithms in 

comparison are taken from include self-adaptive differential 

evolution (SaDE) [20], JADE [14], SHADE [15], linearly 

reducing population based SHADE named as LSHADE 

[16],LSHADEcnEpSin [17], united Multi operator Evolution 

algorithm- II (UMOEAsII) [21], mean-variance mapping 

optimization (MVMO) [22], CV1.0 [23] and CVnew [24]. 

Note that the results are taken for 51 runs and 50 dimensions 

with total computational burden of 10; 000 x D number of 

function evaluations. Here mean error and standard deviation 

values of the difference between desired and the optimal 

solution, are used for calculating the results. For comparison 

with respect to other algorithms, the results are taken from 

[17]. In the next subsection, the results for 10D, 30D and 50D 

dimension size are presented. 

C. Statistical Results for CEC2017 Benchmark Problems 

for 10D, 30D and 50D 

The performance of the proposed SALSHADE algorithm 

is tested for 10D, 30D and 50D and the benchmark function 

taken are CEC2017 single objective problems. The results are 

computed in terms of error values which is calculated by the 

difference between optimal solution and a predetermined 

value of 10-8 and if the computed error is less than this value, 

the error is considered as zero. Tables I, II, III and ?? present 

the results for each dimension size of 10D, 30D and 50D, 

respectively. The results are taken in terms of best, worst, 

mean, median and standard deviation of 51 error values. The 

comparison with respect to other algorithms is given in 

subsequent subsection. 

 

TABLE I. STATISTICAL RESULTS FOR 10D 

Function Best Worst Median Mean Std dev. 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F5 0.00E+00 3.97E+00 1.98E+00 1.65E+00 9.01E-01 

F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F7 1.06E+01 1.47E+01 1.18E+01 1.20E+01 8.68E-01 

F8 2.34E-04 3.97E+00 1.98E+00 1.87E+00 9.18E-01 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 3.61E-01 3.75E+02 1.60E+01 6.44E+01 8.69E+01 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 0.00E+00 2.48E+02 1.18E+02 9.03E+01 6.30E+01 

F13 0.00E+00 8.13E+00 4.83E+00 3.39E+00 2.40E+00 

F14 0.00E+00 2.00E+01 0.00E+00 4.70E-01 2.80E+00 

F15 4.34E-04 4.99E-01 1.06E-02 9.22E-02 1.57E-01 

F16 1.97E-01 1.42E+00 5.32E-01 6.50E-01 2.88E-01 

F17 0.00E+00 2.04E+01 8.30E-01 2.07E+00 4.67E+00 

F18 3.02E-04 4.99E-01 2.58E-01 2.50E-01 2.00E-01 



 

F19 0.00E+00 3.91E-02 1.94E-02 1.28E-02 1.12E-02 

F20 0.00E+00 3.12E-01 0.00E+00 1.46E-01 1.57E-01 

F21 1.00E+02 2.05E+02 1.00E+02 1.46E+02 5.18E+01 

F22 1.15E+01 1.00E+02 1.00E+02 9.82E+01 1.23E+01 

F23 3.00E+02 3.04E+02 3.00E+02 3.01E+02 1.49E+00 

F24 1.00E+02 3.32E+02 3.28E+02 3.01E+02 7.44E+01 

F25 3.97E+02 4.45E+02 4.43E+02 4.22E+02 2.30E+01 

F26 3.00E+02 3.00E+02 3.00E+02 3.00E+02 0.00E+00 

F27 3.85E+02 3.94E+02 3.88E+02 3.88E+02 1.44E+00 

F28 3.00E+02 6.08E+02 3.00E+02 3.59E+02 1.15E+02 

F29 2.29E+02 2.45E+02 2.37E+02 2.37E+02 3.13E+00 

F30 3.87E+02 4.42E+02 3.94E+02 4.02E+02 1.92E+01 

 

TABLE II. STATISTICAL RESULTS FOR 30D 

Function Best Worst Median Mean Std dev. 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F4 5.23E+01 8.19E+01 5.49E+01 5.57E+01 5.26E+00 

F5 9.95E+00 2.85E+01 1.91E+01 1.93E+01 4.11E+00 

F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F7 3.69E+01 7.18E+01 5.34E+01 5.35E+01 7.56E+00 

F8 6.18E+00 2.97E+01 1.73E+01 1.74E+01 4.20E+00 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 1.92E+03 4.21E+03 3.17E+03 3.15E+03 4.36E+02 

F11 1.65E+00 6.90E+01 4.37E+00 1.06E+01 1.70E+01 

F12 1.17E+01 6.75E+02 1.45E+02 2.17E+02 1.29E+02 

F13 6.52E+00 4.62E+01 2.88E+01 2.80E+01 8.58E+00 

F14 2.24E+00 2.84E+01 2.59E+01 2.60E+01 1.26E+00 

F15 6.03E+00 1.16E+01 8.98E+00 8.97E+00 1.16E+00 

F16 2.02E+01 4.11E+02 1.03E+02 1.29E+02 7.29E+01 

F17 4.38E+01 8.04E+01 6.27E+01 6.22E+01 9.64E+00 

F18 2.18E+01 2.57E+01 2.41E+01 2.39E+01 1.01E+00 

F19 8.84E+00 1.70E+01 1.38E+01 1.38E+01 1.56E+00 

F20 4.98E+01 1.12E+02 8.260E+01 8.28E+01 1.40E+01 

F21 2.08E+02 2.31E+02 2.18E+02 2.19E+02 4.40E+00 

F22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.16E-13 

F23 3.48E+02 3.83E+02 3.65E+02 3.65E+02 6.73E+00 

F24 4.24E+02 4.43E+02 4.32E+02 4.32E+02 4.00E+00 

F25 3.85E+02 3.86E+02 3.86E+02 3.86E+02 1.74E-01 

F26 7.78E+02 1.20E+02 9.96E+02 1.00E+03 7.49E+01 

F27 4.91E+02 5.16E+02 5.00E+02 5.01E+02 5.87E+00 

F28 3.00E+02 4.13E+02 3.00E+02 3.28E+02 4.84E+01 

F29 4.70E+02 5.54E+02 5.16E+02 5.16E+02 1.63E+01 

F30 1.94E+03 2.04E+03 1.97E+03 1.97E+03 1.96E+01 

 

TABLE III. STATISTICAL RESULTS FOR 50D 

Function Best Worst Median Mean Std dev. 

F1 0.00E+00 5.09E-06 1.81E+07 6.91E-07 1.17E-06 

F2 0.00E+00 1.00E+00 0.00E+00 7.84E-02 2.71E-01 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F4 1.90E+01 1.12E+02 2.81E+01 3.60E+01 2.50E+01 

F5 2.31E+01 8.34E+01 4.98E+01 5.16E+01 1.42E+01 

F6 0.00E+00 3.82E-07 0.00E+00 1.53E-08 5.53E-08 

F7 7.55E+01 1.53E+02 1.25E+02 1.23E+02 1.77E+01 

F8 2.49E+01 8.55E+01 5.52E+01 5.40E+01 1.34E+01 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 5.06E+03 8.55E+03 6.96E+03 6.83E+03 8.40E+02 

F11 2.84E+01 4.19E+01 3.75E+01 3.62E+01 3.46E+00 

F12 5.03E+02 2.84E+03 1.47E+03 1.50E+03 4.90E+02 

F13 4.23E+01 2.22E+02 1.35E+02 1.34E+02 3.16E+01 

F14 3.42E+01 5.29E+01 4.20E+01 4.20E+01 3.79E+00 



 

F15 3.06E+01 6.43E+01 4.04E+01 4.10E+01 6.18E+00 

F16 2.73E+02 8.95E+02 6.52E+02 6.52E+02 1.28E+02 

F17 2.87E+02 7.09E+02 4.27E+02 4.40E+02 9.76E+01 

F18 2.78E+01 4.08E+01 3.20E+01 3.24E+01 3.21E+00 

F19 2.30E+01 3.30E+01 2.82E+01 2.79E+01 2.22E+00 

F20 1.89E+02 4.92E+02 3.06E+02 3.22E+02 7.42E+01 

F21 2.28E+02 2.88E+02 2.56E+02 2.57E+02 1.45E+01 

F22 1.00E+02 8.70E+03 1.00E+02 2.79E+03 3.55E+03 

F23 4.44E+02 5.08E+02 4.75E+02 4.74E+02 1.60E+01 

F24 5.06E+02 5.60E+02 5.32E+02 5.31E+02 1.47E+01 

F25 4.80E+02 4.91E+02 4.80E+02 4.81E+02 3.09E+00 

F26 1.05E+03 1.61E+03 1.23E+03 1.27E+03 1.58E+02 

F27 4.99E+02 5.30E+02 5.17E+02 5.16E+02 6.90E+00 

F28 4.57E+02 5.07E+02 4.58E+02 4.61E+02 1.15E+01 

F29 4.94E+02 6.27E+02 5.55E+02 5.55E+02 3.40E+01 

F30 5.79E+05 7.59E+05 6.00E+05 6.16E+05 3.98E+04 

D. Statistical Results for CEC2017 in Comparison with 

Other Algorithms 

In this section the results in terms of mean error and 

standard deviation are presented. The first row of Table IV 

present mean error values whereas the values in the second 

row which are in “()” are the standard deviation values. 

Further to test the performance statistically, the Wilcoxon’s 

ranksum test has been performed [25]. The level of 

significance for this test is 0.05 and for present case results 

are presented for SALSHADE algorithm in comparison to the 

SaDE, JADE, SHADE, UMOEAsII, LSHADE, LSHADE-

cnEpSin, CV1.0 and CVnew. The comparison has been done 

as (w/l/t) where w stands for "win" denoted by " + ", l stands 

for "lose" denoted by "+" and t stands for "tie" denoted by " 

= ". Here" + " is added where the results are better than the 

proposed algorithm, "-" for algorithm whose results are worse 

than the proposed SALSHADE algorithm, and if the result is 

" = ", either the algorithms under test or incomparable or have 

no relevance. From the Table IV, if we see the results with 

respect to other algorithms, CVnew and LSHADE perform 

better for 8 functions, LSHADE-cnEpSin for 6 functions and 

UMOEAsII for 7 functions, respectively. It can be seen that 

overall, SALSHADE-cnEpSin algorithm performs better 

than all the other algorithms under comparison. 

 

TABLE IV. STATISTICAL RESULTS OF PROPOSED ALGORITHM IN COMPARISON TO THE STATE-OF-THE-ART ALGORITHMS 

 SaDE JADE SHADE MVMO CV1.0 CVnew LSHADE UMOFAsII LSHADE-
cnEpSin 

SALSHADE 

F1 

1.21E+03 5.23E-14 0.00E+00 1.33E-05 1.00E+10 1.00E+10 0.00E+00 0.00E+00 0.00E+00 6.91E-07 

(1.97E+03) (2.51E-14) (0.00E+00) (5.60E-06) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (1.76E-06) 

- = = - - - = = =  

F2 

9.27E+01 1.31E+13 1.08E+12 1.80E+17 1.00E+10 1.00E+10 4.11E-01 0.00E+00 1.56E+00 7.84E-02 

(4.12E+01) (8.53E+13) (4.39E+12) (1.27E+18) (0.00E+00) (0.00E+00) (6.68E-01) (0.00E+00) (1.93E+00) (2.71E-01) 

- - - - - - - = -  

F3 

2.71E+02 1.77E+04 0.00E+00 5.30E-07 1.95E+04 8.71E+03 0.00E+00 2.12E-09 0.00E+00 0.00E+00 

(8.28E+02) (3.70E+04) (0.00E+00) (1.09E-07) (6.27E+03) (4.08E+03) (0.00E+00) (8.87E-09) (0.00E+00) (0.00E+00) 

- - = - - - = = =  

F4 

8.92E+01 4.96E+01 5.68E+01 3.58E+01 1.16E+02 2.67E+01 8.18E+01 6.54E+01 5.14E+01 3.60E+01 

(4.21E+01) (4.71E+01) (8.80E+00) (3.66E+01) (6.27E+03) (5.92E+00) (4.83E+01) (5.21E+01) (4.42E+01) (2.50E+01) 

- - - - - = - - -  

F5 

9.23E+01 5.42E+01 3.28E+01 8.07E+01 3.41E+02 2.39E+02 1.22E+01 5.08E+00 2.51E+01 5.16E+01 

(1.86E+01) (8.80E+00) (5.03E+00) (1.64E+01) (8.02E+01) (3.80E+01) (2.04E+00) (1.66E+00) (6.44E+00) (1.42E+01) 

- - - - - - - + +  

F6 

7.43E-03 1.44E-13 8.38E-04 5.43E-03 4.85E+01 4.07E+01 5.69E-05 1.19E-06 9.15E-07 1.53E-08 

(2.35E-02) (9.11E-14) (1.01E-03) (3.30E-03) 4.85E+01 (8.14E+00) (3.71E-04) (1.90E-06) (1.07E-06) (5.53E+08) 

- + - - + + - - +  

F7 

1.40E+02 1.01E+02 8.09E+01 1.23E+02 2.74E+02 2.22E+02 6.32E+01 5.64E+01 7.66E+01 1.23E+02 

(1.97E+01) (6.48E+00) (3.78E+00) (1.27E+01) (7.29E+01) (3.49E+01) (1.70E+00) (7.15E-01) (6.06E+00) (1.77E+01) 

- + - - - - + + -  

F8 

9.42E+01 5.52E+01 3.23E+01 7.59E+01 3.29E+02 2.50E+02 1.19E+01 4.77E+00 2.63E+01 5.40E+01 

(1.77E+01) (7.76E+00) (3.82E+00) (1.61E+01) (7.29E+01) (4.51E+01) (2.27E+00) (1.62E+00) (6.59E+00) (1.34E+01) 

- - - - - - + + =  

F9 4.83E+01 1.17E+00 1.11E+00 7.38E+00 1.00E+04 1.06E+04 0.00E+00 1.75E-03 0.00E+00 0.00E+00 



 

(6.29E+01) (1.31E+00) (9.37E-01) (5.77E+00) (2.90E+03) (3.10E+03) (0.00E+00) (1.25E-02) (0.00E+00) (0.00E+00) 

- - - - - - = - =  

F10 

6.60E+03 3.75E+03 3.34E+03 3.49E+03 7.10E+03 6.09E+03 3.17E+03 3.38E+03 3.20E+03 6.83E+03 

(1.63E+03) (2.54E+02) (2.94E+02) (4.31E+02) 

 
 

 

(5.34E+02) 

 
 

 

 

(3.55E+02) (2.54E+02) (4.72E+02) (3.39E+02) (3.46E+02) 

- - = - - - + = +  

F11 

1.09E+02 1.36E+02 1.20E+02 4.74E+01 1.66E+02 1.18E+02 4.86E+01 4.57E+01 2.43E+01 3.26E+01 

(3.54E+01) (3.39E+01) (2.93E+01) (8.72E+00) (3.38E+01) (1.91E+01) (7.91E+00) (9.18E+00) (2.09E+00) (3.40E+00) 

- - - - - - - - -  

F12 

1.11E+05 5.14E+03 5.13E+03 1.29E+03 1.00E+10 1.00E+10 2.16E+03 2.144E+03 1.47E+03 1.50E+03 

(6.20E+04) (3.32E+03) (2.87E+03) (2.79E+02) (0.00E+00) (0.00E+00) (4.51E+02) (5.35E+02) (3.64E+02) (4.90E+02) 

- - - = - - - - -  

F13 

1.21E+03 3.03E+02 2.65E+02 4.37E+01 1.00E+10 9.80E+09 6.26E+01 5.17E+01 6.94E+01 1.34E+02 

(1.45E+03) (2.69E+02) (1.49E+02) (1.76E+01) (0.00E+00) (1.40E+09) (2.83E+01) (2.19E+01) (3.44E+01) (3.16E+01) 

- - - + - - + + +  

F14 

2.18E+03 1.05E+04 2.15E+02 4.85E+01 2.05E+02 3.98E+01 2.90E+01 2.92E+01 2.65E+01 4.20E+01 

(2.20E+03) (3.11E+04) (7.29E+01) (1.21E+01) (2.13E+01) (1.62E+01) (2.92E+00) (2.48E+00) (2.49E+00) (3.79E+00) 

- - - - - - - - -  

F15 

3.35E+03 3.49E+02 3.22E+02 4.46E+01 1.37E+09 2.85E+02 4.07E+01 4.14E+01 2.55E+01 4.10E+01 

(2.79E+03) (4.42E+02) (1.42E+02) (1.12E+01) (3.47E+09) (3.54E+02) (9.91E+00) (1.06E+01) (4.05E+00) (6.18E+00) 

- - - - - - - - +  

F16 

8.17E+02 8.56E+02 7.33E+02 8.40E+02 1.53E+03 1.44E+03 3.76E+02 3.92E+02 2.74E+02 6.52E+02 

(2.34E+02) (1.75E+02) (1.88E+02) (1.93E+02) (2.74E+02) (2.10E+02) (1.17E+02) (1.55E+02) (9.96E+01) (1.28E+02) 

- - - - - - - - -  

F17 

5.08E+02 6.00E+02 5.16E+02 5.19E+02 1.25E+03 1.13E+02 2.54E+02 3.13E+02 2.07E+02 4.40E+02 

(1.53E+02) (1.21E+02) (1.11E+02) (1.33E+02) (1.85E+02) (1.92E+02) (7.45E+01) (1.06E+02) (7.30E+01) (9.76E+01) 

- - - - - - - - +  

F18 

3.24E+04 1.89E+02 1.89E+02 4.17E+01 5.21E+02 1.51E+02 3.92E+01 3.59E+01 2.43E+01 3.24E+01 

(1.68E+04) (1.25E+02) (1.03E+02) (1.94E+01) (1.19E+02) (4.43E+01) (1.10E+01) (8.71E+00) (2.11E+00) (3.21E+00) 

- - - - - - - - =  

F19 

1.13E+04 3.24E+02 1.59E+02 1.73E+01 1.73E+02 5.57E+01 2.45E+01 2.28E+01 1.94E+01 2.79E+01 

(1.68E+04) (1.25E+03) (568E+01) (5.13E+00) (4.17E+02) (1.10E+01) (8.81E+00) (3.76E+00) (2.47E+00) (2.22E+00) 

- - - - - - - - -  

F20 

3.52E+02 4.38E+02 3.33E+02 3.29E+02 1.05E+03 2.81E+02 1.73E+02 2.30E+02 1.14E+02 2.75E+02 

(1.50E+02) (1.33E+02) (1.20E+02) (1.47E+02) (2.14E+02) (1.65E+02) (7.92E+01) (1.23E+02) (3.54E+01) (7.42E+01) 

- - - - - - - - -  

F21 

2.87E+02 2.51E+02 2.33E+02 2.77E+02 5.41E+02 1.18E+02 2.12E+02 2.06E+02 2.26E+02 3.22E+02 

(1.36E+01) (9.63E+00) (5.11E+00) (1.60E+01) (6.27E+01) (8.77E+01) (1.94E+00) (2.54E+00) (7.05E+00) (1.45E+01) 

- - - - - + + + =  

F22 

2.92E+03 3.33E+03 3.17E+03 3.26E+03 7.33E+03 5.77E+03 2.49E+03 1.79E+03 1.59E+03 1.00E+02 

(3.24E+03) (1.80E+03) (1.55E+03) (1.71E+03) (1.99E+03) (3.64E+02) (1.60E+03) (1.91E+03) (1.66E+03) (1.70E+03) 

- - - - - - - - -  

F23 

5.22E+02 4.79E+02 4.59E+02 5.04E+02 7.74E+02 1.87E+02 4.30E+02 4.34E+02 4.59E+02 4.74E+02 

(2.05E+01) (1.17E+01) (8.75E+00) (1.71E+03) (8.06E+01) (5.11E+01) (5.07E+00) (5.21E+00) (6.90E+00) (1.60E+01) 

- - - - - + + + -  

F24 

5.89E+02 5.31E+02 5.31E+02 5.83E+02 8.32E+02 3.25E+02 5.06E+02 5.08E+02 5.12E+02 5.31E+02 

(1.86E+01) (7.62E+00) (7.45E+00) (1.69E+01) (1.21E+01) (8.95E+01) (2.33E+00) (2.60E+00) (5.59E+00) (1.47E+01) 

- - - - - + + + =  

F25 

5.71E+02 5.19E+02 5.06E+02 5.09E+02 5.43E+02 4.70E+02 4.85E+02 4.82E+02 4.89E+02 4.81E+02 

(3.05E+01) (3.48E+01) (3.64E+01) (3.12E+01) (1.51E+01) (2.26E+01) (1.63E+01) (6.44E+00) (1.08E+00) (3.09E+00) 

- - - - - + - - -  

F26 

2.52E+03 1.61E+03 1.41E+03 1.93E+03 2.48E+03 1.16E+03 1.14E+03 5.72E+02 1.30E+03 1.27E+03 

(3.37E+02) (1.21E+02) (9.78E+01) (2.86E+02) (1.88E+03) (1.56E+03) (4.49E+01) (4.07E+02) (1.18E+02) (6.90E+00) 

- - - - - + + - -  

F27 

7.10E+02 5.50E+02 5.49E+02 5.43E+02 7.38E+02 4.53E+02 5.33E+02 5.37E+02 5.85E+02 5.16E+02 

(6.65E+01) (2.34E+01) (2.78E+01) (1.75E+01) (8.21E+01) (7.17E+01) (1.91E+01) (1.73E+01) (9.21E+00) (6.90E+00) 

- - - - - + - - -  



 

F28 

4.99E+02 4.91E+02 4.79E+02 4.64E+02 4.94E+02 4.58E+02 4.73E+02 4.72E+02 5.59E+02 4.61E+02 

(1.53E+01) (2.08E+01) (2.41E+01) (1.50E+01) (1.93E+01) (2.33E+01) (2.24E+01) (2.16E+01) (1.19E+01) (1.15E+01) 

- - - - - = - - =  

F29 

5.11E+02 4.77E+02 4.87E+02 4.89E+02 1.69E+03 1.45E+03 3.51E+02 3.63E+02 3.52E+02 5.55E+02 

(1.37E+02) (8.06E+01) (1.05E+02) (1.40E+01) (2.29E+02) (1.68E+02) (1.04E+01) (2.06E+01) (9.77E+00) (3.40E+01) 

- - - - - - - - -  

F30 

8.07E+05 6.68E+05 6.82E+05 5.81E+05 4.64E+06 6.02E+05 6.53E+05 6.51E+05 6.57E+05 6.16E+05 

(8.33E+04) (9.25E+04) (8.51E+04) (1.02E+04) (8.59E+06) (2.99E+04) (7.32E+04) (6.63E+04) (7.24E+04) (3.98E+04) 

- - - - - + - - -  

w/t/l 0/0/30 2/1/27 0/3/27 2/1/27 1/0/28 8/2/20 8/3/19 7/4/19 6/8/16 
 

 

IV. CONCLUSION 

This paper presents a new SALSHADE algorithm based 

on linearly decreasing scaling factor, exponentially 

decreasing crossover rate and finally L´evy distributed steps 

size for adapting the freq commponent. For minimizing the 

computational burden, the SALSHADE also employs linear 

population size reduction same as used in LSHADE 

algorithm. For perfomance evaluation, the algorithm is 

compared with SaDE, CV1.0, JADE, SHADE, LSHADE, 

UMOEAsII, CVnew and othes. It can be seen from the results 

that the proposed SALSHADE algorithm performs better 

than these algorithms and is highly competitive. For future 

works, the algorithm can be subjected to real world 

optimization problems including antenna design, space 

technology, web forecasting, image processing, web 

clustering, feature selection and others. 
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