
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

 

Software Testing and Lines of Codes-A Study on 

Software Engineering Design Patterns 

Suhaib Ahmed 

Computer Science Engineering 

Amity University 

Dubai, UAE 

suhaiba1@amitydubai.ae 

 

 

  Lipsa Sadath  

Faculty, Software Engineering  

Amity University 

Dubai, UAE 

lsadath@amityuniversity.ae 

 

 

Jumana Nagaria 

Computer Science Engineering 

Amity University 

Dubai, UAE 

 jumanan2@amitydubai.ae

Abstract- There has been n number of software development 

designs and test patterns in software engineering. Frameworks are 

available on methods to calculate the time, effort and human 

power required to develop a software. Our work is a novel study 

on the basics of how proportional is the time required to test a 

software based on the LOCs (Lines of Codes) and the design used. 

The work aims to interlink the understanding between two kinds 

of structural testing. This basic study experiment was conducted 

using 20 different programs. We argue and prove that there is an 

interconnection between the design, Lines of Code (LOC) and 

testing. 

Keywords— software testing, software design, structural test, 

top-down design, bottom-up design, LOC. 

I. INTRODUCTION 

Every Software is tested before it is used. There are different 
types of test methods. The technique to design a software matters 
so that it is convenient to be used by the user. This paper uses 3 
types of Lines of Code (LOC) – less than 50, between 50-100 
and above 100. The experimental data uses structural testing 
which is based on top down design and bottom up design. We 
argue that bottom up design is better for software development 
through a graph plotted between the test time and the Lines of 
Code (LOC) using 20 programs with different programming 
languages and two different program designs. Basic excel tools 
were utilized for calculating time and speed to generate the 
resultant graph. Thus we are using a UML design to summarize 
our results. 

The paper follows the order as Section II includes details on 
software testing, importance of testing, structural and functional 
tests, Section III is a discussion on the importance of software 
design patterns such as bottom-up and top-down with also 
details on cohesion and coupling and lines of codes, Section IV 
includes  literature review on various software tests studies on 
different platforms, Section V is our test experiment followed by 
results discussion and future works in Section VI and VII 
respectively.   

II. SOFTWARE TESTING 

Software test is a process of testing software with the 
intention of finding errors. The purpose of testing is to prove that 
software is free from any error. Software’s design is very 
important in order to correctly test a program. Removal of bugs 
and errors in the earlier stages could cost less than those at the 
end[1].  

Consider a software designed for a bank where every data is 
crucial. The bank holds the trust of the customers. Imagine a 
minor error in the program can result in major calculation 
problems leading to a big confusion. This often occurs due to 
faulty software.  Therefore it becomes vital to test the software 
before using it officially. 

A. Importance of Software Testing 

Testing is important for the successful release of a software 
product. It is essential for gaining customer confidence and 
satisfaction. Testing helps to develop a high quality product 
hence requiring lower maintenance cost[1]. Then the longevity 
of the software is more and the chances of it to fail are lesser. 
This is important to develop an effective software application. 
In software testing it is advised to test the product earlier because 
the cost of the corrections are lower in the early stages. The 
process gets difficult to if the product is commercial.  

Much problems have been discussed in the past due to 
technical failures in products due to lack of software testing [2].  
October 2007 released Guitar Hero III: Legends of Rock a game 
that was popular in six days of its release[23]. This game 
allowed players to play music with a guitar-like controller. But 
within a month, the players discovered that it could not play a 
stereo sound which was the primary source for rock music.  

It was difficult to correct the mistake as millions of 
customers were involved. To replace the error, the company 
offered to create a website that facilitated the process. The 
customers had to wait for the replacement disc. All of these, the 
company could have avoided by a simple software test. 
Therefore software testing is equally important as writing codes. 
If testing was overlooked, it led to disastrous results. 

In September 1999, due to software error there was a loss of 
US$125 million. The martin engineers used English units for 
navigation where NASA [22] used metric units. This 
inconsistency resulted in losing a valuable spacecraft. Testing 
the spacecraft before releasing in a simulated environment 
would have helped to catch the error. One of the worst setbacks 
was the when the US missile system [21] couldn’t detect an 
incoming missile from Iraqi scud. That resulted in killing of 28 
soldiers injuring others in US army barracks. The software 
incorrectly calculated that the missile was out of range. To avoid 
this timing error, a simulated test for a long period could have 
been held. The top priority of testing is to avoid the errors in the 
final software version. Testing a program before release is worth 
the expense. 



 

 

The purpose of testing is to assure that the design is 
implemented properly with the help of the code written by the 
program. The system must be according to the customer 
needs[3]. 

B. Functional Testing 

Functional Testing is based on the specification 
requirements. In this type of testing each function is confirmed 
with the requirements[4]. This test involves black box testing 
technique which is not concerned about the source code of the 
application but only the internal logic. During functional testing 
each function are tested by giving suitable inputs, and comparing 
them to the anticipated results. Checking of Interfaces, APIs, 
Client server applications and other functionalities of software 
are involved in functional testing. 

C. Structural Testing 

Structural Testing also called White-Box or glass-box tests 
are done to find bugs for various operations that occur in the 
lines of code of a program. It encompasses complete knowledge 
of the system[5]. The structural tests help the testers to find out 
problem based on the operation of the program. For example, 
the structural test exposes that the code has been written for a 40 
character username but the application is only allows 20 
characters to be entered. 

Various techniques of Structural testing are code coverage, 
statement coverage and branch coverage. Code coverage 
eliminates any empty spaces in the test case given. It removes 
areas of the code that are not suitable. Hence the quality of the 
software application increases. Statement coverage refers to test 
each statement at least once during the testing process. Finally, 
Branch coverage checks the code with every path possible 
according to if loops and conditional loops in the source code. 

Structural Testing helps in revealing errors in hidden code 
and identifying dead code or major issues in the program. It is 
better to do a structural test after the software application has 
been developed and after each modification. It is also necessary 
for the testers to have a deep knowledge on the language that is 
being used. Structural testing can take days and weeks or even 
longer for large programming applications to fully test. On the 
other end, it can be expensive to expend time and money due to 
the complexity involved. 

Structural testing involves many testing types that evaluate 
the application source code. Unit testing is primary test that is 
done to any application and it helps to find most of the major 
bugs early in the development. These bugs are cheap and easy 
to fix in the starting phases. Memory Leak testing is done to 
eliminate any memory leaks which make the application run 
slower. Mutation testing is done to discover a new efficient 
coding technique that should be followed for expanding the 
software solution. 

III. SOFTWARE DESIGN 

Software design is used to convert the system specification 
into an implementable system. It describes the model, the 
structure, the algorithms used and the interfaces between the 
different system components. It deals with the size and 
complexity of programs[6]. The developers create the software 
design in iterative steps. They do not create the design at once 

but they keep adding the details to the previous design. Object 
Oriented program design such as C++ and Java as an unit of 
software design because it is widely approved by software 
industry[7]. The designs may be sequential and interleaved.  

The information of the operating system, the database and 
other application system is very essential for a designer. These 
are the speciation requirements from the customer which may 
vary depending on the software being developed. 

Example: A real-time system does not include a database so 
therefore there is no design for database but it includes a timing 
design. 

There are controversies that the software design is not 
controlled by the software engineers. It is believed that software 
design gets evolved with culture. Example: Google 
Kubernetes[8]. 

A. Importance of Software Design 

Software Design helps to build a model for the required 
product or the system. The quality of the model is evaluated and 
tested before coding where a large number of end users are 
involved[9]. Software design acts as a blueprint or a plan for the 
system. The man objective of the design phase is to identify the 
major modules of the system and there interaction with each 
other[10]. Software must have a good design that makes it easier 
for the customer to understand, interact and reliable. The design 
should provide accurate, complete detailed working of 
software[1]. A good design allows making small changes in any 
phase. The requirements of the software are fulfilled by 
designing according to the need of the customer. 

B. Top-Down Design 

Top down design is another strategy approach to identify the 
major modules and decompose them into lower modules 
iteratively until the desired system is achieved. Most of the 
design methodologies are based on this approach as the 
specification are very clear and the development starts from 
scratch[1]. Testing is not done when coding starts immediately 
after designing unless all the subsidiary modules are coded. 

 

Fig. 1. Top down Program Design 

C. Bottom-up Design 

One of the strategies to design is Bottom-up design. It finds 
the modules required by the different programs. These modules 
can be input and out functions, graphical functions which are 
combined together in the form of library[1]. Combining these 
modules into a big module until the desired program is achieved 



 

 

but it is sometimes difficult to identify the modules and initiate 
the design[11]. 

As the name suggests, the designs are processed from the 
bottom layer. Bottom up design is suitable for designing 
software from an existing system. 

Example: A module for a student result system includes the 
details of the students as well as the subjects for entering the 
marks respectively. 

 

Fig. 2. Bottom up Program Design 

D. Cohesion and Coupling  

Cohesion is a software metric used in software engineering 
to measure the unity within a software module. In other words, 
cohesion is the functional strength of a module. A module with 
maximum cohesion is functionally independent[1]. Cohesion 
emphases on the internal interactions inside a class of a 
program[12]. Functional Independence refers to the ability to 
perform a single task or a function. This type of modules has 
minimal interaction with other modules in the software. In 
bottom up design the dynamic cohesion is the interdependency 
between the objects during runtime[13]. Good software will 
have high cohesion. Cohesion is identified by different types 
based on the functionality of the given module. In feature 
cohesion the different roles of various interfaces are directly 
related[14]. 

Coupling is a metric used to measure the inter-relationship 
of various modules in a software structure. In terms of bottom-
up approach, software modules are divided into smaller modules 
that are interdependent[1]. Coupling emphases the interaction 
between different classes in a program[12]. Modularization 
helps in achieving data independence, where even if the data is 
changed in one module, it won’t affect the data in other 
modules[15]. Therefore low coupling is preferred. The 
complexity and the abstraction of two or more modules affect 
the degree of coupling. 

E. Lines of Code 

Lines of Code (LOC), is a metric used to measure the 
program size by counting the number of lines in the source code. 
The lines of code include the header files, functions, declarations 
and other executable and non-executable codes. There was a 
predicament whether to include blank lines and comments in 
LOC. Later, it was certain that comments in the code help the 
testers to debug the program without difficulty and also reducing 
the cost during maintenance phase. The Lines of Code (LOC) is 
always dependent on the language used for development[1]. It is 

inadequate for calculating other tasks like functionality, 
complexity, efficiency of the code. 

The effort and the duration of the software project are 
calculated with the help of LOC and other constraints affecting 
the development. The cost of a software project planning is 
estimated by using Single Variable Models or Multi Variable 
Models.  The common equation is, 

 

            C = a Lb    ………….…….. (1) 

 
where C is the cost of effort in person-months, L is the lines 

of code and a, b are the constants derived from past projects of 
the organization.  

IV. LITERATURE REVIEW 

Software’s were widely integrated into many products. The 
concept of search based software testing influenced the domain 
specialists to build test cases with very little software testing 
knowledge. According to Marculescu et al., there was an 
interaction between the testing system and the domain 
specialists during the iterative developments to maintain quality 
that determined the fitness of possible solutions[16]. Lower 
quality software was built due to cost or unavailability of 
resources and requirement of expertise to test software. The 
running example included the mechanical arm that made use of 
the joystick. ISBSE model developed consisted of two cycles: 
inner cycle and outer cycle. The interactions between these 
cycles were attained through feedbacks, evaluations from 
domain expert. The outer cycle arbitrated the interface between 
the domain specialist and interaction handler. The primary role 
of interaction handler was to show the possible solution to the 
domain expert and take necessary feedback. If fitness function 
was replaced by a human domain specialist that resulted in low 
potential solution but additional knowledge from the human 
added up to improve the selection mechanism. Feedbacks were 
mostly related to solution candidate, display feedback that were 
related to the number of candidates exhibited, memory 
requirements, response times and quality focus feedback. The 
domain expertise was enabled to modify the criteria that 
implemented the preliminary selection. The main objective of 
the inner cycle was to provide best solution for the human 
specialist. Search component and intermediate fitness function 
were the two components of the inner cycle. The purpose of 
intermediate fitness function was to provide early screening of 
solutions so that the successful solutions were studied by the 
domain expertise. The search component encapsulated the 
algorithm to generate potential solution. The significance arises 
for systems where domain knowledge was the key factor in the 
success of the testing process. 

Mutation testing is a software testing method which helped 
to identify artificial defects in a system under test[17]. This 
method was conducted by generating mutants in the original 
program and by running the mutant program and the original 
program through the test suites. If the test suits does not 
identifies fault in the original program and all the artificial faults 
in the mutants, it was determine that the original program is free 
from any error. Due to the storage requirement, high 
computation and human effort many cost reduction techniques 
had been developed. The use of good mutation tools was very 



 

 

important for a mutation testing. A good mutation testing tool 
consisted of many cost reduction technique. It was suggested to 
choose any tool with correct operator according to the test 
requirement.  The test cases were tried to keep independent and 
built a re-executable test with well-suited for the testing tools. 
Mutants were created for critical parts. If the system was too 
large, evaluation of these tests took a long time so it was advised 
to perform the tests at night. A perfect threshold for the mutation 
test was resulted in cost rather than in benefits. The study 
showed that each mutation tools had cost reduction technique. 

Successful software’s were built upon user’s satisfaction and 
the usefulness. However faults, defects, misunderstanding in any 
project were leaded to high cost which in turn affected the 
quality of the product[18]. The aim of software review process 
was to reduce the cost as well as to produce good quality 
products. The necessity of taking preventive measure in the early 
stage of development of the project helped to fix the errors. 
During the requirement analysis and development many case 
study reflected the benefits of software review. The case study 
conducted by Petunova.O and Berzisa.S was based on nine 
European countries that involved test planning, test case design, 
business requirement. The case study collected the statistics of 4 
release testing based on the level of complexity: critical, major 
and minor defect before implementation of test case review. The 
data indicated that 206 defects were found out of which 62% -
major defects, 25 %-critical defects and others were minor 
defects. The test case review were implemented and checked if 
they were according to the well-defined standards and 
necessities. Another tester reviewed the test case which had 
equivalent experiences as an author but could not write the test. 
To sum up the report, the statistics were collected after the test 
review that provided the end result of 145 defects, out of which 
major defect were 65%,minor defects were 11% and others as 
critical defect. As observed the percentage of defects did not 
change but the total numbers of defects were reduced by 30%.  

In software testing, communication played a big role that 
helped to fix the potential defects. There were communication 
problems between the testers and the developers who were the 
external service provider. Sometimes due to emails, more time 
was required to explain the developer about the defects and 
mistakes. Software quality depended on information exchanged 
as it made it easier to find the errors and take the significant step. 
Information availability reduced the confusion and incorrect 
decision. Sometimes important information regarding the test 
was not passed to the tester. Often tester used outdated 
description version which resulted in making mistake. It was 
believed that the software review reduced the total testing time 
if the defects were fixed at early stages. 

Biological modeling systems were important where 
simulated data on the computer was used to predict the behavior 
which was resilient by nature. This leaded to limited 
experiments in laboratories which were expensive and slow. As 
a result, the usages of computers were becoming necessary 
because it was less expensive and faster. Further analyzing 
biological systems, software approaches were flexible by means 
of replication, isolation and delegation. This ensures that the 
systems failed and recovered without compromising the whole 
system. Thus, biological systems and software systems were 
more flexible, scalable and welcomed changes. 

The author’s work in the paper observed that biological 
immunity and software resilience were considered as two sides 
of the same coin[19]. For example, immune systems under 
biological systems were resilient system. Thus, it helped 
software systems to be inspired from the elements, relations and 
behaviors of immune systems. 

The Akka Actor model was an architecture model which was 
used for structuring resilient systems which supported scalable 
and concurrent computation. It was inspired by the immune 
system elements which were the first step towards making a bio-
inspired paradigm for developing software systems. The Actor 
Model was characterized by (i) inherent concurrency of 
computation within and among Actors, (ii) dynamic 
creation/replication of Actors, (iii) inclusion of Actor addresses 
in messages, (iv)interaction only through direct asynchronous 
message passing. 

The lightweight approach for a specification testing included 
planning, performing test and finding faults in a specification to 
execute the desired output. A simple file system on a SIM model 
for mobile application with Global system for mobile 
communication (GSM) was used as a framework[20]. The aim 
of the model was to calculate the effective cost and to detect 
faults. The framework proposed indicated how different roles 
are responsible for the specification testing. There were 4 roles 
where the developer implemented, the requirement engineer 
provided the specifications and requirements for the 
development and the testers were responsible for generating a 
test graph. The test graph was used to compare with the 
specification that was derived from the requirement engineers. 
Finally the role of the reviewer was required for rechecking the 
test graph and to complete the testing process. 

A control flow graph enhanced easy readability because it 
was created based on effect predicate. There was a start node and 
each conjunction was a new node that was attached with the sub 
graphs of its arguments. To make the testing easier, a telegraph 
editor was used and the traversal was automated. An operation 
test was performed to check the precondition and input for any 
violation, the post-state and outputs were related to the specified 
inputs. Animator was needed to verify if the operation test was 
corresponding with the specifications. 

There were various risk factor associated with the framework 
such as test graph which was derived from incorrect 
requirements or was incomplete. The test graph was a partial 
model that doesn’t contain important behaviors to be tested. 
There were greater risks when specification and implementation 
model displayed the same coincidental incorrectness. It was very 
important to analyze that all the specifications were executed. 
The data collected from this framework was tested with BZ 
Testing Tool framework. The result displayed a fail in effort. 

V. TEST EXPERIMENT 

The experiment was performed on 20 different programs 
which range in number of lines of code and these programs were 
coded by the students. The lines of code were noticed to be less 
than 50 and ranging from 50 to above 100. These programs were 
classified according to the program design. The main idea was 
to identify the design from the programming language used. For 
example, Java is an object oriented approach; hence it was 



 

 

categorized into Bottom-up design whereas C is Top-down 
design due to the procedure oriented approach.  The testing was 
done to measure the time taken to fix the bugs and errors.  

The Table 1 contains the list of various programs that were 
tested. Different programming languages had LOC between 0-

50, 50-100 and above 100. For less than 50 lines of code, there 
were six programs which were tested. Out of 20, 6 programs 
were considered for lines of code somewhere in the range of 50 
and 100 and the rest of the 4 programs were tested for over 100 
Lines of code. 

TABLE I EXPERIMENTAL DATA 

Based on the above table 1, a graph was interpreted with the 
help of Microsoft Excel by taking Time in (mins) and LOC as 
units. The average time taken by the testers to debug is plotted 
in this graph Fig. 4. 

 

Fig. 3. UML Design 

VI. RESULTS 

The experimental result delivers that there is a relationship 
between testing and Lines of Code (LOC). The lesser the lines 
of code lesser is the time taken to test a program. Individual 
programs are integrated to make software and it is tested 
individually. Developer codes the software programs and testers 
are solely responsible to make the software error free. The Fig. 

3 depicts a developer and two testers namely Tester 1 and Tester 
2 as actors and their roles respectively.  In Fig. 4 the Blue line 
indicates Top-Down Program Design and the Red line indicates 
Bottom-Up Program Design. The x-axis in the graph Fig. 4 
represents the Lines of Code (LOC) and the y-axis represents the 
Time in minutes to test a program. Tester 1 performs the testing 
on Top-Down design, whereas Tester 2 simultaneously 
performs the testing on Bottom-Up design. Tester 1 proves 
through the Fig. 4 that top down design takes more time to 
perform the test as it needs to begin the testing from the starting 
node. The bottom up approach is far easier to test as every node 
is interconnected and easier to follow.  

Hence the study concludes that testing is directly 
proportional to lines of code and bottom up approaches are far 
more accurate, reliable, convenient and faster than later design. 

 

 
Fig. 4. Experimental Graph Result 



 

 

VII. CONCLUSION AND FUTURE WORKS 

Software testing guarantees the reliability and satisfaction of 
the customer through developing a high quality product with low 
maintenance cost. As many new technologies are emerging, the 
demand for testing is increasing. Hence this paper links how 
testing design and Lines of Code (LOC) can be related. Bottom-
up approach is compared with Top- down approach in order to 
estimate the time and feasibility to find and solve a bug. It was 
proven that Bottom- up design is faster and easier than Top-
down design. 

In the upcoming world of A.I, IOT and machine learning, 
testing techniques will evolve. The requirement to change the 
old traditional method of testing is growing. Therefore testing is 
seen to have a better and a brighter future. 

We use Lines of Code (LOC) for basic experimental data. 
Our future work will involve expanding the experiment in an 
industrial project where the size of Lines of Code will be in 
KLOCs. Furthermore, to prove bottom-up program design is 
best pattern for software designing. 

VIII. REFERENCES 

[1] Y. Aggarwal, K.K.; Singh, Software Engineering, 3rd ed. New Age 
International Publishers. 

[2] E. Torres, “Inadequate Software Testing Can Be Disastrous [Essay],” 
IEEE Potentials, vol. 37, no. 1, pp. 9–47, 2018. 

[3] Shari Lawrence Pfleeger; Joanne M.Atlee, Software Engineering: Theory 
and Practice, 3rd ed. Pearson Education Inc., 2006. 

[4] B. Beizer, Black-box testing: Techniques for functional testing of 
software and systems, vol. 4, no. 8. John Wiley & Sons, Inc. (US), 1995. 

[5] R. Black, Managing the Testing Process: Practical Tools and Techniques 
for Managing Hardware and Software Testing. John Wiley & Sons, Inc. 
(US), 2002. 

[6] I. Sommerville, Software engineering, 9th ed. . 

[7] J. Al Dallal and L. C. Briand, “An object-oriented high-level design-based 
class cohesion metric,” Inf. Softw. Technol., vol. 52, no. 12, pp. 1346–
1361, 2010. 

[8] E. A. Lee, “Is software the result of top-down intelligent design or 
evolution?,” Commun. ACM, vol. 61, no. 9, pp. 34–36, 2018. 

[9] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed. 
McGraw Hill Education (India) Private Limited, 2014. 

[10] P. Jalote, An Integrated Approach to Software Engineering, 3rd ed. 
Narosa Publishing House Pvt. Ltd., 2005. 

[11] H. A. Kautz, B. Selman, M. Coen, and S. Ketchpel, “Bottom-up design of 
software agents,” in Commun. ACM, 1994. 

[12] M. English, T. Cahill, and J. Buckley, “Construct specific coupling 
measurement for C software,” Comput. Lang. Syst. Struct., vol. 38, no. 4, 
pp. 300–319, 2012. 

[13] V. Gupta and J. K. Chhabra, “Dynamic cohesion measures for object-
oriented software,” J. Syst. Archit., vol. 57, no. 4, pp. 452–462, 2011. 

[14] S. Apel and D. Beyer, “Feature cohesion in software product lines,” 
Proceeding 33rd Int. Conf. Softw. Eng. - ICSE ’11, p. 421, 2011. 

[15] H. Dhama, “Quantitative models of cohesion and coupling in software,” 
J. Syst. Softw., vol. 29, no. 1, pp. 65–74, 1995. 

[16] B. Marculescu, R. Feldt, and R. Torkar, “A concept for an interactive 
search-based software testing system,” in International Symposium on 
Search Based Software Engineering, 2012, pp. 273–278. 

[17] P. Reales, M. Polo, J. L. Fernandez-Aleman, A. Toval, and M. Piattini, 
“Mutation testing,” IEEE Softw., vol. 31, no. 3, pp. 30–35, 2014. 

[18] O. Petunova and S. Bērziša, “Test Case Review Processes in Software 
Testing,” Inf. Technol. Manag. Sci., vol. 20, no. 1, pp. 48–53, 2017. 

[19] M. Autili, A. Di Salle, F. Gallo, A. Perucci, and M. Tivoli, “Biological 
Immunity and Software Resilience: Two Faces of the Same Coin?,” in 
International Workshop on Software Engineering for Resilient Systems, 
2015, pp. 1–15. 

[20] T. Miller and P. Strooper, “A case study in model‐based testing of 
specifications and implementations,” Softw. Testing, Verif. Reliab., vol. 
22, no. 1, pp. 33–63, 2012. 

[21] E. Schmitt. (1991, June 6). U.S. details flaw in Patriot missile. New York 
Times. [Online]. Available: 
https://www.nytimes.com/1991/06/06/world/us-details-flaw-in-patriot-
missile.html?mcubz=0[Accessed on 15-02-2019]. 

[22] CNN. (1999, Sept. 30). NASA’s metric confusion caused Mars orbiter 
loss. Available Online: 
http://edition.cnn.com/TECH/space/9909/30/mars.metric/ [Accessed on 
15-02-2019]. 

[23] C. Kohler. (2007, Dec. 12). Activision sued for Guitar Hero sound 
problems. Wired. [Online Available]: 
https://www.wired.com/2007/12/activision-sued/. [Accessed on 15-02-
2019]. 

 

 


