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Abstract—Confidentiality of the social media data during 

analysis is a major concern.  Several real evidences show how 

the privacy and security of the data is compromised. One of the 

essential processes with social media data is to find the shortest 

paths between selected pair of nodes. This paper proposes a 

technique to modify the original data before analysis. The 

algorithm calculates shortest paths (data utility) between target 

nodes and then classifies edges into partially visited, all-visited 

and unvisited edges. Each category of edges is then perturbed 

using a dynamic variable value that is bound to satisfy specific 

constraints such that the shortest path as well as the shortest 

paths lengths, between the target node pairs remains the same.  

This paper proposes an approach to preserve the privacy of the 

weights and also generates an accurate length of the shortest 

path. It is also observed that the shortest path lengths between 

any target pairs of nodes are retained. The output is in the form 

of graphs, that shows that the proposed perturbation strategy 

perturbs the sensitive edge weights up to a maximum 72% , 

while keeping the difference in shortest path lengths minimum 

(up to 3%). It is hence demonstrated that along with preserving 

the sensitive information by perturbing the edge weights, the 

data utility is preserved i.e. the shortest path lengths are kept as 

near as potential to the original ones. 

Keywords—social networks, shortest path, privacy 

preserving, perturbation method. 

I. INTRODUCTION 

The proposed work emphasizes on sustaining the privacy 

of the edge weight in a graph. To ease the data analysis 

process, data owners might not want to perturb the shortest 

path length of a set of nodes but may not need to share the 

precise weight of every edge. A Perturbation Strategy is 

proposed which can retain the exact direct paths and tries to 

make corresponding lengths nearby to the original ones. This 

paper emphases on a privacy preservation procedure which is 

pragmatic on graphs to preserve data privacy and data utility. 

The data privacy is maintained with respect to the individual 

edge weights that is local information. Data Utility is for the 

shortest path, i.e., a path with a minimum sum of weights 

which is essentially a global property. While maintaining data 

utility, edge weights are perturbed as much as possible. The 

shortest paths and lengths approximate to the original ones as 

much as possible.  As mentioned in [1] due to issues with 

high dimensionality and large scale of the data, traditional 

transformation techniques cannot be used to modify the 

original social network data. Another essential issue is in 

identifying what information in social networks is 

confidential and its relationship to personal privacy [2]. For 

instance, it is argued that associations in the form of weights 

when attached to edges are sensitive data and has to be 

preserved to avoid breach in privacy of the data in social 

networks. It is also difficult to mathematically define and 

manipulate data in social networks and quickly process such 

data to keep its privacy. Based on the above reasons, new 

theoretical foundations and corresponding technologies 

should be proposed to successfully and confidentially 

discover invaluable information in non-traditional data 

domains like social networks with a guarantee of privacy 

preservation within a satisfactory level. Recent works on 

privacy preservation in social networks [3, 4, 5] focus on de-

identification procedure. These processes safeguard the 

privacy of persons while maintaining the patterns generated 

by interaction. These de-identification methods are 

frequently used when the individual’s credentials are 

considered to be of top priority, example a customer’s 

identity. But under several situations, the individual 

distinctiveness is not always measured to be trustworthy. In 

a weighted social network, the de-identification process 

without taking weight privacy into account is not enough to 

ease public privacy concern as node identifications are not 

considered as privacy in all cases. Also, some distinguishable 

weights can be used to reveal certain sensitive relationships 

if the weights are not modified in a weighted privacy 

preserving social network. Basic workflow of the model is 

shown in figure 2. EIES (Electronic Information Exchange 

System) [12] data is used in the project which is 32 x 32 

matrix.  A sample of the dataset is as shown in figure 1. After 

feeding the dataset to the model, preprocessing techniques are 

applied to convert the data into symmetric matrix according 

to the algorithm’s requirement. Greedy perturbation 

algorithm is used in the project which helps in converting the 

symmetric matrix to get a perturbed adjacency weighted 

matrix. Further to analyze and visualize the results of output, 

graphs are used. The final output of this project will be graphs 

which give the estimation of the percentage of privacy that 

has been preserved along with percentage of change in 

shortest path lengths after using greedy perturbation 

algorithm. 

EIES holds interactions between 32 researchers who 

communicated with each other through email. The tabulated 

data is shown in figure 1. Numbers 0 to 4 in figure 1 means 

the following: 0 means that no interactions have occurred, 1 

means that the researcher had heard about the other but has 

not met him/her, 2 means that they have met each other, 3 

means a researcher who is also a friend and frequently visited, 

4 means a close personal friend with sufficient interactions, 

whereas 7 and 9 mean missing interactions. 



II. LITERATURE SURVEY 

According to L. Liu, J. Wang [6], there has been a large 

volume of privacy-preserving data extraction reviews in the 

literature. Many researchers attempt to develop methods to 

maintain data applications by not disclosing the original data 

and to produce data analytical results that are as close as 

possible to that of original data. 
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Fig. 1. Sample EIES data set comprising of acquaintanceship values between 

researchers 

 
Fig. 2. Flow Diagram of the Proposed Work 

Among those techniques [7], privacy preserving data 

mining can be broadly classified into two main categories. 

One category performs data mining by modifying the values 

of the distributed datasets and models them without knowing 

the exact values. Methods in the different category perturb 

the values of the dataset to preserve privacy of the data 

attributes. Perturbation techniques are divided into two 

subcategories, data addition and data multiplication, both of 

which are easy to implement but practically useful.  In [13, 

15], a structure for privacy preserving social network 

publication using the concept of grouping and 

anonymization.  [14] Uses approaches to find the nearesh 

shortest path rather than perturbation. 

According to Olivera Grljević, Renata Mekovec[8], for 

the data additive perturbation strategy, although individual 

data items are distorted, the aggregate properties of the 

original data can be accurately maintained. These properties 

may facilitate data clustering and classification and finding 

association rules. Data multiplicative perturbation is also 

good for privacy-preserving data mining. This technique 

dramatically distorts the original data but maintains inter-data 

distances which are also effective for distance specific 

applications such as clustering and classification. The 

difference between the two perturbation strategies is that, in 

the former strategy, only the aggregate distribution properties 

are available for data mining and the individual data behavior 

is hidden, while in the latter case it can keep more data-

specific properties such as distances which can facilitate 

more diverse data mining tasks. 

Liu, Lian et.al [9] clearly mentions the importance in 

preserving privacy in social networks and the use of 

traditional privacy preserving data mining. Perturbation is an 

secure method used to provide sufficient privacy in social 

network data. Here we provide a brief survey on privacy 

preserving social networks. Much progress has been made in 

studying the properties of social networks, such as degree of 

a node, structure, interactions (type and number) and 

identifying the society of people involved. As data is not 

structurally represented in matrix form in social networks, 

traditional matrix-based algorithms cannot be used to 

preserve privacy as mentioned in [10]. 

Authors emphasize on protecting the privacy of social 

entities using identification through de-identification 

techniques. Zhou et al in [11] discusses a framework of 

inserting and eliminating unweighted edges in social 

networks. This avoids impersonators in recognizing based on 

the information collected about the neighborhood. Emphasis 

was made on the protection of social entity’s identification 

via de-identification using k-anonymity and its variants. 

However, k-anonymity methods work well on centralized 

data. [16] Elaborates on the need of social network analysis 

for identifying patterns among a group of researchers. 

III. PROPOSED WORK 

A social network graph is represented as G consisting of 

edges and vertices. The collection of edges is denoted by E 

and V represents the list of vertices. P indicates the shortest 

path. wi, j indicates the original weight of an edge between 

nodes i and j, ps1, s2 represents shortest distance between s1 

and s2 whereas ds1, s2 represents the minimum path length 

between s1 and s2. Being applied the perturbation, w*i,j , p*s1, 

s2 , d*s1, s2 represents the perturbed weight, shortest path and 

perturbed shortest path length. 

It is essential to observe that the modified graph will 

have the same name of vertices and edges as that of the 

unperturbed graph. However, the weights are enhanced and 

vary from the original graph. The path between the edges 

remains the same when compared to the earlier graph. The 

edges can be broadly classified as non-betweenness edge, all 

between edge and partial betweenness edge.  When none of 

the shortest paths pass through an edge, that edge is called 

non betweenness edge. When all the shortest paths traverse 

through an edge then that edge is called all betweenness edge. 

All other edges are called partial betweenness edges. 

A. Data Preprocessing 

The following transformation is performed to generate 

the symmetric matrix ‘W’ where Wi, j = 9 − (Ei, j + Ej, i), where 



Ei, j is a numerical value which represents the ith researcher’s 

original association to the jth researcher. 

B. Calculation of Shortest paths  

Floyd Warshall algorithm is used to calculate the shortest 

path between targeted pairs of nodes (H) from real network, 

using the adjacency matrix. The edges obtained are stored in 

a Dictionary with their count of occurrences. 

C. Classification of Edges 

The edges so obtained are classified into: 

• All Visited - decreasing its weight will not change all 

shortest paths in H but decrease the length of 

corresponding shortest paths. 

• Partially Visited - increase or decrease weight by ‘t’ 

• Non-visited - increasing its weight will not change all 

shortest paths and lengths in H. 

Figure 3 shows all the three categories of edges after 

classifying them into visited, non-visited and partially visited 

 

Fig. 3. Categories of edges 

D. Improved Greedy Perturbation Algorithm 

Notations Used 

wi, j - The original weight of an edge between nodes i and j 

ps1, s2 - Shortest path between s1 and s2  

ds1, s2 - Shortest path length between s1 and s2.  

w*i, j - perturbed weight of edge between nodes i and j  

p*s1, s2 – perturbed shortest path between s1 and s2 

d*s1, s2 - perturbed shortest path length. 

The weight of the partially visited edge Ei,j is enhanced 

by ‘t’ where ‘t’ is a value between 0 to minimum of the 

distance between the conditional shortest path(d+s1,s2)  and 

distance between shortest path length from nodes s1 and 

s2(ds1,s2), for all shortest path from s1 to s2 (ps1,s2). In the 

above case except the distance between the nodes are 

modified and becomes larger but the shortest paths remain 

the same. A graph of the conditional shortest paths are 

included in a graph G+, which contains only the edges ei,j and 

ej,i and their corresponding weights ie (w+
i,j=wi,j+ t). For each 

node pair (s1, s2), ds1, s2 ≤ d+
s1, s2. 

The weight of the partially visited edge Ei,j is reduced 

by ‘t’ , where t is in between 0 and min{ds1,i + wi,j , dj,s2 − 

ds1,s2},for all ps1,s2. Here the distance between the nodes are 

decreased. 

From the above-mentioned conditions for modifying 

distance, a practical greedy perturbation process is as 

described in Algorithm 1. The input that goes to this 

algorithm is the adjacency weight matrix obtained from the 

original graph. Using the Floyd Warshalls algorithm, the 

shortest path and their respective lengths are obtained. Based 

on the information obtained all the edges are classified as 

non-visit, visited and partially visited edges. The weights of 

the unvisited edges are perturbed by adding a random value. 

Similiarly, the weights of the visited edges are reduced using 

the same random value. An initial perturbed weight matrix 

P* is generated along with the perturbed shortest length 

matrix D*. Further, the weights of partially visited edges are 

customized. At first, partially visited edges are sorted based 

on the descending order of the number of shortest paths 

passing through that edge. All these are stored in a stack 

Stack. The edges are popped one by one and perturbed based 

on the conditions mentioned earlier. A popped-out edge will 

never be put back in the stack again. Hence, perturbation 

occurs only once for the partial betweenness edge. The matrix 

D* is recomputed and updated by Floyd-Warshall algorithm. 

Input: Graph G representation: symmetric adjacency weight matrix 

W; Shortest Path Matrix D. 

Output: The perturbed symmetric adjacency weight matrix D∗ of the 

corresponding perturbed graph G∗. 

Procedure: 
1. Calculate the shortest path and distance matrix from W to obtain P 

and D. 

2. Assign D to D*. 
3. Identify the non-visited and all visited edges (Ei,j) and modify the 

weights Wi,j = Wi,j ± t. Select t based on the conditions. Update D*. 

4. Compute the shortest paths passing through the partial visited edges. 
Push the edges into the stack Stack in decreasing order of shortest 

paths.  

Repeat till Stack is empty 
        Pop edge on top of stack to get ei,j  

        num1 = number of values where d*n1,n2 less than or equal to dn1,n2, 

where n1 and n2 are nodes. 
num2 = number of values where d*n1,n2 less than or equal to dn1,n2 , 

where n1 and n2 are nodes. 
            If (num1 › num2) 

 identify a value t within the range and update weight for the edge i,j. 

w∗ i,j = wi,j + t  

 else  

obtain a value t given the range and upgrade weight for the edge i,j as 

follows  w ∗ i,j = wi,j - t  

       end if  

update the matrix D∗  

end while. 

 

IV. RESULTS AND DISCUSSION 

Table-I shows the difference between original edge 

weights (original costs) and perturbed weights (perturbed 

costs) for four iterations. The amount of preserving the 

privacy and the performance of the proposed perturbation 

algorithm is measured by mapping the edge weights and 

shortest path length. Figure 4 shows the improvement shown 

by the proposed model. The plot shows the percentage of 

perturbed shortest path lengths and weights following 



perturbation. Also, on perturbation about 77% of the targeted 

pairs are preserved. The percentage of modified weight with 

length that descends within the x-axis difference to original 

ones is shown in figure 4. 

TABLE I. COMPARISON OF ORIGINAL AND PERTURBED SHORTEST PATH COSTS IN VARIOUS ITERATIONS 

Target Pairs Original Cost Perturbed Cost 1st Perturbed Cost 2nd Perturbed Cost 3rd Perturbed Cost 4th 

17:914 73 67 52 70 61 

1:991 59 51 61 69 66 

136:722 77 90 122 146 107 

578:81 54 55 33 58 56 

126:73 45 45 61 49 58 

636:273 69 72 69 57 65 

703:2 68 59 72 72 70 

800:19 48 19 68 41 51 

142:54 49 42 43 67 73 

137:720 63 69 63 56 61 

594:105 23 29 55 28 37 

766:32 55 37 51 55 52 

258:27 91 73 88 86 94 

823:938 73 88 75 86 94 

297:464 56 67 53 46 57 

800:48 59 57 68 73 60 

195:453 57 69 58 47 61 

86:540 69 81 71 83 70 

The plots show that the even after perturbation the 

modified shortest path length and the original shortest paths 

lengths are close enough. Hence the conclusions   derived 

from this perturbed result would provide similar results. With 

reference to the Figure 5 the plot of original edge weights and 

the new perturbed edge weights which is obtained after the 

algorithm is applied. The Figure 6 shows the plot of original 

shortest path lengths and the new shortest path lengths 

obtained after the perturbation is applied on edge weights as 

per the algorithm. 

With reference to Figure 7, the percentage change of 

edge weights on targeted edges. The graph shows the amount 

of privacy preserved. By perturbing the original weights of 

each edge between the targeted pairs we aim at preserving 

privacy.  As shown in the Figure 8 the percentage change in 

shortest path lengths after the algorithm is applied. Around 

80% of targeted pairs have their path lengths equal to the 

original ones. From this result we can conclude that the data 

utility has been preserved along with the data privacy. 

 
Fig. 4. Results with the improved greedy perturbation approach 

 

 

Fig. 5. The original edge weights vs perturbed edge weights of targeted nodes 

 

 

Fig. 6. Shows the plot of the original shortest path lengths and the perturbed 

shortest path lengths. 



 

Fig. 7. Percentage of perturbation of edge weights 

 

 

Fig. 8. Percentage of change in shortest path lengths between the target node 

pairs. 

V. CONCLUSIONS 

Social networks can be analyzed to discover various 

social issues like disease transmission, emotional contagion, 

and occupational mobility. With the advancements in 

technologies, people from various communities interact with 

each other regularly. This paper is motivated by the breach in 

the privacy concerns of the data while interacting.  The 

privacy preserving framework allows data owners to 

maintain the confidentiality of the data while processing the 

necessary information. The proposed work protects the 

weights between the nodes that are considered susceptible but 

maintains the shortest paths and their path lengths. The 

experimental results demonstrate that the proposed 

perturbation strategy perturbs the sensitive edge weights upto 

a maximum of 72%, while keeping the difference in shortest 

path lengths minimum (upto 3%). This technique has various 

applications, for instance - in commercial data analysis field, 

this algorithm can help companies make better decisions such 

as choosing an optimal supply chain in the network and at the 

same time preserve sensitive information such as transaction 

expenses, bidding quotations etc . This algorithm is even 

useful in healthcare domain. It can provide better analysis of 

protein samples and DNA molecules to the biologists and 

medical researchers, while keeping the data of patients 

confidential. 
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