
Multi-Resolution Hierarchical Structure for Efficient

Data Aggregation and Mining of Big Data
Safaa Alwajidi

Department of Computer Science

Western Michigan University

USA

safaakhalilmu.alwajidi@wmich.edu

Li Yang

Department of Computer Science

Western Michigan University

USA

li.yang@wmich.edu

Abstract—Big data analysis is essential for modern

applications in areas such as healthcare, assistive technology,

intelligent transportation, environment and climate monitoring.

Traditional algorithms in data mining and machine learning do

not scale well with data size. Mining and learning from big data

need time and memory efficient techniques, albeit the cost of

possible loss in accuracy. We have developed a data aggregation

structure to summarize data with large number of instances and

data generated from multiple data sources. Data are aggregated at

multiple resolutions and resolution provides a trade-off between

efficiency and accuracy. The structure is built once, updated

incrementally, and serves as a common data input for multiple

mining and learning algorithms. Data mining algorithms are

modified to accept the aggregated data as input. Hierarchical data

aggregation serves as a paradigm under which novel data

representations and algorithms work together for analysis and

mining of big data. To evaluate its performance, we have

implemented a multi-resolution Naive Bayes Classifier on the data

aggregation structure. Experimental results show that the

proposed structure helps the classifier to reduce computation time

to 25% on average and reduce the memory usage while preserving

the accuracy of results.

Keywords—Big data reduction, data aggregation,

multiresolution data mining.

I. INTRODUCTION

The analysis of big data is essential for many applications
such as health care, assistive technology, intelligent
transportation, environment and climate change monitoring,
where millions of data instances are gathered within a short
period of time. However, traditional data mining algorithms
have limits to scale up on big data with limited memory and
CPU resources [1].

Data mining is an iterative and non-trivial process to
extract implicit and previously unknown useful information
from data [2] [3]. Many data mining algorithms require a scan
of data multiple times. Therefore, accessing big data instance
by instance for mining is a prohibitive process, which has
motivated researchers to think about new techniques to speed
up the analysis of big data. These techniques generally vary
from parallel algorithms to utilize multi-core processors,
compression algorithms to minimize the required space to store
the data, dimensionality reduction algorithms to reduce the
number of variables in the data, and data summarization
techniques to reduce the number of data instances of the big
data.

Data mining on summarized, reduced and relevant data is
more efficient than working on raw, redundant, inconsistence
and noisy data [4]. However, few empirical studies have been

conducted to reduce the number of data instances by
summarizing them and use the summarized data for data
mining. Using summarized data for data mining has a few
technical challenges.

The first challenge is to use the summarized data as
common measures to serve many data mining algorithms.
Determine the proper summarization measures depends on
what parameters each data mining algorithm needs to build its
model. For this purpose, the summarized data should provide
minimal and yet sufficient information to each data mining
algorithm.

The second challenge is to organize the summarization in
multiple resolutions. multiple resolutions enable the user to
choose the proper resolution and make a compromise between
time, memory and accuracy depend on the available resources
and the application requirement.

The third challenge is the efficient generation and
maintenance of the summarized data. Although generated once,
we want this to be fast enough and more importantly, can be
updated incrementally.

In this paper, we propose a common multi-resolution tree
structure. The overall objective of the proposed tree structure is
to maintain scalable and reliable summarization of both on-the-
fly and historical big data in a multi-resolution form for
efficient data mining. The structure provides a representative
and reduced set of big data to be used by mining and learning
algorithms to implement their model faster and less memory
usage with possible little loss in accuracy.

The rest of the paper is divided into five sections. The first
section gives background and previous work. In the second
section, we explain data cube lattice for big data. The third
section introduces the proposed structure and gives its
implementation and performance analysis. Experiments and
results are discussed in the fourth section. The final section
concludes this paper by giving areas of future work.

II. BACKGROUND AND PREVIOUS WORKS

Time complexity of many data mining and machine
learning algorithms depends on the number of instances in the
dataset. For example, Support Vector Machine (SVM) has a
time complexity of O(N3) in its quadratic solution and its best
complexity of O(N2) using sequential minimal optimization
(SMO) technique [5], where N is the number of instances.
Similarly, conventional decision tree such as CART has a time
complexity of O(NlogN) and similarity-based classifiers such
as KNN has a time complexity of O(Ndk). These algorithms and
other mining algorithms which may require multiple scans of

data are computationally expensive when the number of
instances is big [1]. To work on big data sets, many mining and
learning algorithms need a preprocessing step to reduce the
number of instances N albeit the cost of possible loss in
accuracy.

A recent study [6] shows proof that random sampling is the
only technique commonly used by data scientists to quickly
gain insights from a big dataset. However, it is hard to find a
representative random sample for non-stationary big dataset
because the values of attributes are too distinctive and not
evenly distributed.

Instance selection is one example of instance reduction
techniques, that subsets the raw data set into a small group of
instances. The subset techniques reduce the quality of data
considerably and have a computational complexity of at least
O(NlogN) [7] [8]. That makes instance selection unsuitable for
big data sets. Note that instance selection is different from
sampling. Sampling is a random selection from the raw dataset
while instance selection considers instance correlation to select
most informative instances [9].

Data aggregation is another technique that is used to reduce
the number of instances in which similar instances are
combined into one instance to eliminate redundancy. More
advanced methods for aggregation include multidimensional
data cube, which holds aggregated data in subspaces to support
advanced analysis and decision making. It is widely used in
business intelligence [10]. Han [11] proposed. On-line
Analytical Mining (OLAM) which integrates mining models on
top of a multidimensional data cube and OLAP engine to gain
efficiency and scalability for data mining. Multidimensional
data cube suffers from its big size, which grows exponentially
when the number of dimensions increases [12]. A few
techniques have been proposed as solutions for the problem.
For example, iceberg cube [13] ignores data cells with fewer
data instances than a user-defined threshold. Most cells in the
data cube are sparse cells that represent empty regions in
multidimensional data space, these cells can be removed for
efficient mining and learning process.

Data cells aggregated at different resolutions need to be
linked for quick references. A specialized index structure is one
of the major techniques that can be used as a solution for the
problem [14] [15]. An index structure such as a tree has been
used to overcome the inefficiency of the multidimensional data
cube. Many variations of KD-tree [16], aR-tree [17], and R+-
tree [18] have been used for this purpose. However, K-DTree
based methods are known for their complicated creation and
slow performance with high dimensional data. More
importantly, it does not support incremental update. aR-tree
deals with overlapped regions which add a computational
overhead that we do not need since we deal with non-
overlapped regions (as we will see in Section III), while R+-tree
cannot deal with aggregated data.

In addition, CF tree that used in BIRCH method [19] [20]
and R* tree which used in DBSCAN method [21] [22] are other
types of index structure. However, these methods are dedicated
only for spatial data type and are query dependent. Once we
implement the tree depending on a specific query (data mining
task), we cannot use it again for other queries. Therefore, these
indexing techniques need to scan the raw data repeatedly [23].

III. DATA CUBE

In this paper, we consider a dataset of size N x d where N
is the number of instances and d is the number of variables (N
>> 2d). These variables take continuous numeric type values.

Continuous data are common such as the data generated
from sensors like temperature, air pressure, gyroscope,
accelerometer, GPS, gas sensors and water sensors.
Aggregating continuous data into a multi-resolution
hierarchical structure is not a straightforward process because
continuous data lacks concept hierarchy.

We propose using a hierarchical multilevel grid
summarization approach to reduce the number of data
instances. Similar method has been used in spatial data mining
[23] [24] and robotic mapping [25]. In this method, each
dimension in the data set is divided into a limited number of
equal width and non-overlapping regions (bins). Each region
stores the summarization information of the raw data instances
falling inside it. We labeled each region by giving it a number
to distinguish between them. The multilevel structure forms a
different granularity of data aggregation, where multiple
regions at a lower level are grouped to form one region in the
next higher level. We assume aggregation of each level to half
of the size of its immediate lower level. This method provides
a concept hierarchy for continuous data.

The hierarchical multilevel grid on multiple dimensions
can be assumed as a multidimensional data cube. Fig. 1 shows
an example of a multidimensional data cube lattice generated
from three dimensions, each has four levels of aggregation.

Fig. 1. The lattice of multidimensional data cube that generated from three
dimensions.

Each node in the lattice is a cuboid that represents a single
combination of aggregation levels (one level from each
dimension). Starting from the bottom base cuboid (L4, L4, L4),
which is a combination of lowest levels (levels 4) of dimensions
1, 2 and 3 respectively, toward the top cuboid/Apex cuboid (L1,
L1, L1), which is a combination of highest levels (levels 1) of
dimensions 1, 2 and 3 respectively. Thus, the data cube lattice
aggregates data in all combinations of dimensions levels
between these two cuboids.

Each cuboid contains a number of cells. Each cell in the
data cube is defined and accessed by a multi-value index, which
is a set of regions numbers (one region number from each
dimension). For example, Fig. 2 shows a base cuboid of the
cube lattice, we assume level 4 has 8 regions for each of the
three dimensions, also it shows a cell indexed by < 1, 7, 8 >
which is formed from regions 1,7 and 8 of dimensions 1, 2 and
3 respectively.

Fig. 2. The base cuboid (L4, L4, L4)

IV. PROPOSED MULTI-RESOLUTION TREE STRUCTURE

Storing aggregated data in a tree structure makes valuable
tree operations such as search operation available. Searching
the tree structure is faster and more efficient than searching the
massive raw dataset. Apriori technique [26] is another example
technique in which the features at high tree levels can be
computed from features of low tree levels without the need to
rescan the raw data. Parallel and distributed aggregation are
also available using the tree structure.

The proposed tree holds aggregated data in multi-
resolution levels. The lowest layer of data cube aggregation
(L4, L4, L4) is stored in the tree leaves, and as we move toward
the tree root the level of aggregation increase. The number of
tree levels (denoted by h) is determined by the domain expert.

The aggregation in the proposed tree is carried out on all
dimensions at the same time. In other words, for the previous
example in Section III, the tree can aggregate data to only
cuboids (L1, L1, L1), (L2, L2, L2), (L3, L3, L3) and (L4, L4,
L4). Thus, the data in any level of the tree is aggregated to 2-d
of its size to the next upper level (because each dimension is
assumed to be aggregated to half of its size to the next upper
level). Note that, the apex cuboid (L1, L1, L1) is not generated
as it does not benefit for mining purpose to aggregate all dataset
in one node. Fig. 3 shows an example of a tree that aggregates
data into two levels only, (h = 2), level two is the base cuboid
(L4, L4, L4) and level one is the cuboid (L3, L3, L3).

Each node except the root in the tree represents a non-
empty cell from the corresponding cuboid. The typical contents
of an intermediate node include (I) statistical measures of
aggregation of data instances in the node. These measures

should be updated incrementally when new data instances join
the data set (II) map table to its parent and children nodes.

Fig. 3. Typical multi-resolution tree with two levels of aggregation and root
node. Each tree node corresponds to a nonempty cell in the cuboid

Each entry in the map table has a pointer pointing to the
corresponding node, as shown in Fig. 4. The minimum number
of children is 0 for leaf nodes and the maximum number of
children is 2d. The map table of any leaf node has only a single
entry that point to its parent node and no entries for children.
The root node is the only node that does not have statistical
measures. Thus, it does not represent any level of aggregation.
It holds only the map table to the nodes of the highest level in
the tree. We assume that the root node can be easily uploaded
to memory (another assumption that the tree or part of it can be
loaded easily to the memory).

Fig. 4. Typical intermediate node content. (a) Incremental statistical features
(b) Map table.

A. Multi-indexing and Mapping

A tree node, similar to a data cube cell, is a tuple over the
attributes of dimensions, and its index has multiple values of
the form < a1,l, a2,l, …, ad,l > where ap,l is a region number of
dimension p at tree level l. We give each node a name which is
the level number of the tree where the node resides, combined
with its index. The node name is used to access and distinguish
nodes of the tree.

To build the tree efficiently from a data set, we have used
a mapping function to map each raw data instance to its
corresponding nodes in the tree structure. For each data
instance, the mapping function generates multiple keys

(indexes), one for each level in the tree. For example, if the tree
has root and three levels, and the raw data has d dimensions, the
mapping function generates three keys, as shown in Fig. 5.

Fig. 5. Map function.

Designing the map functions of complexity O (d) is crucial
to ensure efficient and rapid mapping process. To satisfy this
requirement the map function should be designed so that it does
not depend on information that needs additional calculation. For
example, when indexing a dimension depending on Z-score,
this may need a map function that requires mean of the values.
Getting the mean for streaming big data set is an overhead
obstacle. We recommend design map function depending on
information that is already available for the data set, for
example, in HAR (Human Activity Recognition) we know
previously some sensors like gyroscope could generate infinite
real type data between -20 and 20 [27], so designing the map
function depending on maxima and minima distance is
appropriate and cost no overhead computation.

For multiple resolution tree implementation, we need to
provide the minimum value 𝑚𝑖𝑛𝑝 in the dimension p, the

number of tree levels h and a matrix W where each element
wp,l ϵ W is the regions width of dimension p at level l. Both h
and W can be determined by a domain expert. Thus, for the
above example the map function could map the data instance <
v1, v2, …, vd > using Eq. (1) as map function:

B. Sufficient Statistical Measures

Aggregating many data instances in one node in the
multiresolution tree structure needs more than taking the
average of these objects. We need to calculate statistical
measures that are expressive enough, small in size, common
and incrementally updated from raw dataset to materialize the
multiresolution tree structure. BIRCH [19] is an example of a
data clustering algorithm that keeps three measures sum,
squares sum, and the number of instances for each cluster of
data. Inspired by BIRCH, we use the same measures because
they are incremental and can be updated directly for each node
providing the ability of top-down or bottom-up update of the
multi-resolution structure. In addition, we added minimum and
maximum values measures that denote the boundary values of
the dimension region corresponding to this node. Table I shows
the basic summarization measures computed for each node of
the proposed structure. Note that sum, squares sum, minimum
and maximum are computed for each dimension. Level number
l, region number i and dimension p can be obtained from node
name.

TABLE I. SUMMARIZATION FEATURE MEASURES

The measures in Table I can represent a wide spectrum of
basic statistic features used for data mining. They can be used
to calculate basic statistics like mean µ, variance σ2, and
standard deviation σ incrementally, which are necessary for
many other statistical measures, such as variables correlation
and distribution. Table II shows the basic statistics that can be
computed from measures in Table I.

TABLE II. BASIC STATISTICAL MEASURES

These measures provide enough information to compute
cluster means, sizes and distance in different modes. For
instance, Euclidean, Manhattan, L1 and L2 distances between
cluster centers and average inter-cluster distances. This
information is useful for clustering algorithms and similarity-
based learning.

If class labels are included in the aggregated data, this
would allow us to calculate class probabilities. Class
probabilities are essential in building a classifier such as
Bayesian classifiers, Hidden Markov Model (HMM), and in
defining Entropy, Gain ratio and Gini index for building
decision trees without accessing individual data objects.

The dimension of class labels is a categorical attribute that
has a finite number of values/labels. We can divide this
dimension into regions where each region is a unique class
label. There is no aggregation applied on the class attribute and
it is maintaining the same regions at all levels of the proposed
multi-resolution structure. Thus, each node is pure and has a
summarization of data that belongs to only one class. To
compute Eq. (2) the class probability P(C), where C is a specific
class label, from the proposed tree structure, we need only one
scan of any level in the tree and use count measure n combined
with class attribute value C for each node in the level.

Where q is the set of nodes that belong to a specific level
in the tree, ni is the number of instances aggregated in node i
while ni,C is the number of instances aggregated in node i that
has class label C.

C. Implementation and Performance Analysis

The implementation of the proposed structure is a top-
down process, starting from the root node toward leaf nodes. To
analysis the worst performance case of updating the structure
when a new data instance arrives, we assume the data is
scattered over all the regions space and no region left without
data. Thus, each node in level h - 1 in the multi-resolution
structure has the maximum 2d children of leaf nodes (level h).
Providing the structure height h, and region width matrix W
along with maximum and minimum values for each of the d
dimensions, we can calculate the number of leaf nodes Nh:

Where wp,h ϵ W, is the regions width for dimension p at tree

level h. The values 𝑚𝑎𝑥𝑝 𝑎𝑛𝑑 𝑚𝑖𝑛𝑝 are the maximum and

minimum values of dimension p respectively.

In case class labels C is included in the structure, the
number of nodes at level h is:

The |C| is the cardinality of class labels dimension C. The

cardinality equal to the number of distinct values of class labels.

Each level is aggregated to 2-d of the size of its immediate
lower level. Thus, the number of nodes in any intermediate
level l depends on leaf level is:

Then, the maximum total number of nodes in the

multiresolution structure with one root node and h levels is:

Although the size of a tree node is larger than the size of

raw data instance, the space needed to store the proposed multi-
resolution tree structure is less than the space of storing the raw
data because NTree << N and N, the number of instances in the
raw data, is very big and increase over time due to streaming
data.

Algorithm 1 builds the multi-resolution tree structure with
a single scan of input data. For a coming data instance, it starts
using the map function to generate h index keys, one key for
each level in the tree such as the example in Fig. 5. The
algorithm then examines the root map table for an entry that
matches the first key. If the entry is found, the algorithm calls
its node using the corresponding pointer and then update its
measures. In case the entry is not found, the algorithm creates a
new node and a new entry in root map table to hold its key
(same as the first key generated by map function). The
algorithm then makes that entry pointing to the newly created
node and updates its measures. The algorithm repeats this
process until it reaches the leaf node.

Fig. 6 explains Algorithm 1 using the same example from
Fig. 5, the dotted curve represents the algorithm progress path
from the root to leaf nods and only the red nodes are visited and

uploaded to memory. These nodes are the root node and a single
node from each level of the tree.

Algorithm 1 is more efficient than a data cube because it
avoids creating empty nodes intuitively, and thus it generates a
smaller tree structure than a data cube. Also, it avoids search all
nodes. Instead it calls only (h + 1) nodes and cost O (h + 1) disk

operation. The worst case of this process cost 𝑂 (𝑁ℎ 2𝑑⁄ +
∑ 2(ℎ−𝑙)𝑑ℎ−1

𝑙=1) computation to update the tree due to arrive one
data instance, where Nh /2d is the cost to search map table of the

root node, and ∑ 2(ℎ−𝑙)𝑑ℎ−1
𝑙=1 is the cost to search the map tables

of visited nodes. We visit one node at each level (levels 1 to h -
1), the level h or leaf nodes will not be searched as they do not
have children. Updating proposed tree using Algorithm1 is
more efficient than updating CF tree in Birch algorithm which
requires two passes of the tree. Top-Down pass to find the
appropriate nodes and Bottom-Up pass to update these nodes.

Fig. 6. Updating the multi-resolution tree

V. EXPERIMENTAL EVALUATION

In this section, we run several experiments on our proposed
structure to speedup Naive Bayes classifier. Naive Bayes
classifier is a simple and powerful data mining algorithm that is
used in classification problems such as text classification and
medical diagnosis. Given a training dataset of N instances in d
dimensional space and each instance belongs to one of k
different classes, Naive Bayes finds estimated class label ŷ Eq.
(7) based on the Bayes theorem that used to compute class
probability P(C) and assigns the class label Ck with the highest
posterior probability to unclassified instance x.

Naive Bayes assumes that the variables are independent
and uses the normal distributed probability to calculate Eq. (8)
the class probability of normally distributed variables.

Naive Bayes classifier, working on raw data, scans all data
instances to compute the conditional mean, variance and
standard deviation that are required to compute the likelihood
for continuous variables. This slows the training process for big
dataset.

In this experiment, we have generated several datasets of
different sizes 104, 105, 106, 107, 2 x 107, 22 x 107, 23 x 107 and
108 instances. Each dataset serves as a raw dataset and has two
normally distributed continuous predictor variables and one
response variable with two class labels 0 and 1. Each dataset
has been split randomly into 80% training and 20% testing sets.
We use the training set to implement the multiple resolution tree
structure based on the following parameters values h = 4 and W
= {0.1, 0.2, 0.4, 0.8}.

First, we implement Naive Bayes classifier that uses the
proposed multi-resolution tree as input to compute the

conditional mean, variance and standard deviation from
summarization features as in Table II and substitute them in the
previous equation to get the probability of continuous variables.

We then apply Multi-resolution Naive Bayes (MRNB) on
the tree structures and compare it with the traditional Naïve
Bayes algorithm (NB) applied on raw datasets. The results are
given in Table III and show that our MRNB algorithm can
achieve overall higher performance than NB in all datasets.
MRNB consumes on average 25% less time than traditional NB
and less memory since it can work on the higher level (level 1)
of the tree which consists of a number of nodes N1 less than the
number of instances in the raw dataset N1 << N. More
importantly, it maintains the same accuracy of prediction as
NB.

TABLE III: TIME IN SECONDS FOR MRNB AND NB

VI. CONCLUSIONS AND FUTURE WORKS

We have developed a common multi-resolution indexing
tree representation that maintains scalable and reliable
summarization of both on-the-fly and historical big data. This
structure is built once, updated incrementally, and used to
reduce computation time and memory usage for mining and
learning algorithms. We have developed effective techniques to
create, organize, access and maintain an incremental update of
the tree layers and contents. The structure summarization
features provide the necessary information for many data
mining and learning algorithms. We have implemented the
Naive Bayes classifier to use the tree structure as input, and then
tested it on several datasets. The results show that the algorithm
consumes less time and memory when using the proposed
multi-resolution tree than working on the raw data.

Using this summarization structure by mining algorithm is
more efficient than accessing raw data. However, traditional
mining algorithms limited to work on a flat dataset, in which
the data is organized in a matrix or CSV like file format. The
change in the structure of raw data after aggregation into the
multi-resolution tree structure makes it unavailable for
traditional mining algorithms. Our future work will be setup to
implement more data mining algorithms to accept multi-
resolution summarized tree structure as input and to use its
summarized measures to estimate parameters of their models.
Candidate methods include approximate similarity-based
classifiers, Bayesian belief networks, conventional tree
classification and online approximated Support Vector
Machines (SVM).

REFERENCES

[1] A. Bifet, “Mining Big Data in Real Time,” Informatica 37, pp. 15–20,
2013.

[2] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, “Big data

analytics: a survey,” Journal of Big Data, vol. 2, no. 1, Dec. 2015.

[3] W. J. Frawley, “Knowledge Discovery in Databases: An Overview,”

Knowledge Discovery in Databases, 1991.
[4] M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah, and

S. U. Khan, “Big Data Reduction Methods: A Survey,” Data Science and

Engineering, vol. 1, no. 4, pp. 265–284, Dec. 2016.
[5] Feng Cai and V. Cherkassky, “Generalized SMO Algorithm for

SVMBased Multitask Learning,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 23, no. 6, pp. 997–1003, Jun. 2012.
[6] J. A. R. Rojas, M. Beth Kery, S. Rosenthal, and A. Dey, “Sampling

techniques to improve big data exploration,” in 2017 IEEE 7th

Symposium on Large Data Analysis and Visualization (LDAV). Phoenix,
AZ: IEEE, Oct. 2017, pp. 26–35.

[7] S. Garca, S. Ramrez-Gallego, J. Luengo, J. M. Bentez, and F. Herrera,

“Big data preprocessing: methods and prospects,” Big Data Analytics,
vol. 1, no. 1, Dec. 2016.

[8] S. Garca, J. Luengo, and F. Herrera, “Instance Selection,” in Data

Preprocessing in Data Mining. Cham: Springer International Publishing,

2015, vol. 72, pp. 195–243.

[9] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active

learning,” Knowledge and Information Systems, vol. 35, no. 2, pp. 249–
283, May 2013.

[10] A. Cuzzocrea, “OLAP Data Cube Compression Techniques: A Ten-Year-

Long History,” in Future Generation Information Technology, ser.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Dec.

2010, pp. 751–754.

[11] J. Han, “Towards on-line analytical mining in large databases,” ACM
Sigmod Record, vol. 27, no. 1, pp. 97–107, 1998.

[12] S. Alwajidi and L. Yang, “3d Parallel Coordinates for Multidimensional

Data Cube Exploration,” in Proceedings of the 2018 International
Conference on Computing and Big Data - ICCBD ’18. Charleston, SC,

USA: ACM Press, 2018, pp. 23–27.

[13] F. Heine and M. Rohde, “PopUp-Cubing: An Algorithm to Efficiently
Use Iceberg Cubes in Data Streams,” in Proceedings of the Fourth

IEEE/ACM International Conference on Big Data Computing,
Applications and Technologies - BDCAT ’17. Austin, Texas, USA: ACM

Press, 2017, pp. 11–20.

[14] Y. Tao, D. Papadias, and J. Zhang, “Aggregate Processing of Planar

Points,” in Advances in Database Technology EDBT 2002, G. Goos, J.

Hartmanis, J. van Leeuwen, C. S. Jensen, S. altenis, K. G. Jeffery, J.

Pokorny, E. Bertino, K. Bhn, and M. Jarke, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, vol. 2287, pp. 682–700.

[15] W. F. Pan, D. R. Y. Cui, and Q. D. W. Perrizo, “Efficient OLAP

Operations for Spatial Data Using Peano Trees,” in Proceedings of the 8th
ACM SIGMOD workshop on Research issues in data mining and

knowledge discovery, San Diego, California, 2003, pp. 28–34.

[16] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,
and J. Du, “Fast neighbor search by using revised k-d tree,” Information

Sciences, vol. 472, pp. 145–162, Jan. 2019.

[17] Y. Hong, Q. Tang, X. Gao, B. Yao, G. Chen, and S. Tang, “Efficient
RTree Based Indexing Scheme for Server-Centric Cloud Storage

System,” IEEE Transactions on Knowledge and Data Engineering, vol.

28, no. 6, pp. 1503–1517, Jun. 2016.
[18] L.-Y. Wei, Y.-T. Hsu, W.-C. Peng, and W.-C. Lee, “Indexing spatial data

in cloud data managements,” Pervasive and Mobile Computing, vol. 15,

pp. 48–61, Dec. 2014.

[19] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data

clustering method for very large databases,” in ACM Sigmod Record, vol.

25. ACM, 1996, pp. 103–114.
[20] L. Kovacs and L. Bednarik, “Parameter optimization for BIRCH

preclustering algorithm,” in 2011 IEEE 12th International Symposium on
Computational Intelligence and Informatics (CINTI). Budapest, Hungary:

IEEE, Nov. 2011, pp. 475–480.

[21] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with

Noise,” in Proceedings 2nd International Conference on Knowledge

Discovery and Data Mining, 1996, pp. 226–231.
[22] K. Mahesh Kumar and A. Rama Mohan Reddy, “A fast DBSCAN

clustering algorithm by accelerating neighbor searching using Groups

method,” Pattern Recognition, vol. 58, pp. 39–48, Oct. 2016.
[23] W. Wang, J. Yang, and R. Muntz, “STING: A Statistical Information Grid

Approach to Spatial Data Mining,” in Proceedings of the 23rd VLDB

Conference, 1997, p. 10.
[24] M. Huang and F. Bian, “A Grid and Density Based Fast Spatial Clustering

Algorithm,” in 2009 International Conference on Artificial Intelligence

and Computational Intelligence. Shanghai, China: IEEE, 2009, pp. 260–
263.

[25] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,

“OctoMap: an efficient probabilistic 3d mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, Apr. 2013.

[26] C. Aflori and M. Craus, “Grid implementation of the Apriori

algorithm,"Advances in Engineering Software, vol. 38, no. 5, pp. 295–
300, May 2007.

[27] J. W. Lockhart, G. M. Weiss, J. C. Xue, S. T. Gallagher, A. B. Grosner,

and T. T. Pulickal, “Design considerations for the WISDM smart phone-
based sensor mining architecture,” in Proceedings of the Fifth

International Workshop on Knowledge Discovery from Sensor Data.

ACM, 2011, pp. 25–33.

