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Abstract—Big data analysis is essential for modern 

applications in areas such as healthcare, assistive technology, 

intelligent transportation, environment and climate monitoring. 

Traditional algorithms in data mining and machine learning do 

not scale well with data size. Mining and learning from big data 

need time and memory efficient techniques, albeit the cost of 

possible loss in accuracy. We have developed a data aggregation 

structure to summarize data with large number of instances and 

data generated from multiple data sources. Data are aggregated at 

multiple resolutions and resolution provides a trade-off between 

efficiency and accuracy. The structure is built once, updated 

incrementally, and serves as a common data input for multiple 

mining and learning algorithms. Data mining algorithms are 

modified to accept the aggregated data as input. Hierarchical data 

aggregation serves as a paradigm under which novel data 

representations and algorithms work together for analysis and 

mining of big data. To evaluate its performance, we have 

implemented a multi-resolution Naive Bayes Classifier on the data 

aggregation structure. Experimental results show that the 

proposed structure helps the classifier to reduce computation time 

to 25% on average and reduce the memory usage while preserving 

the accuracy of results. 

Keywords—Big data reduction, data aggregation, 

multiresolution data mining. 

I. INTRODUCTION 

The analysis of big data is essential for many applications 
such as health care, assistive technology, intelligent 
transportation, environment and climate change monitoring, 
where millions of data instances are gathered within a short 
period of time. However, traditional data mining algorithms 
have limits to scale up on big data with limited memory and 
CPU resources [1]. 

Data mining is an iterative and non-trivial process to 
extract implicit and previously unknown useful information 
from data [2] [3]. Many data mining algorithms require a scan 
of data multiple times. Therefore, accessing big data instance 
by instance for mining is a prohibitive process, which has 
motivated researchers to think about new techniques to speed 
up the analysis of big data. These techniques generally vary 
from parallel algorithms to utilize multi-core processors, 
compression algorithms to minimize the required space to store 
the data, dimensionality reduction algorithms to reduce the 
number of variables in the data, and data summarization 
techniques to reduce the number of data instances of the big 
data. 

Data mining on summarized, reduced and relevant data is 
more efficient than working on raw, redundant, inconsistence 
and noisy data [4]. However, few empirical studies have been 

conducted to reduce the number of data instances by 
summarizing them and use the summarized data for data 
mining. Using summarized data for data mining has a few 
technical challenges. 

The first challenge is to use the summarized data as 
common measures to serve many data mining algorithms. 
Determine the proper summarization measures depends on 
what parameters each data mining algorithm needs to build its 
model. For this purpose, the summarized data should provide 
minimal and yet sufficient information to each data mining 
algorithm. 

The second challenge is to organize the summarization in 
multiple resolutions. multiple resolutions enable the user to 
choose the proper resolution and make a compromise between 
time, memory and accuracy depend on the available resources 
and the application requirement. 

The third challenge is the efficient generation and 
maintenance of the summarized data. Although generated once, 
we want this to be fast enough and more importantly, can be 
updated incrementally. 

In this paper, we propose a common multi-resolution tree 
structure. The overall objective of the proposed tree structure is 
to maintain scalable and reliable summarization of both on-the-
fly and historical big data in a multi-resolution form for 
efficient data mining. The structure provides a representative 
and reduced set of big data to be used by mining and learning 
algorithms to implement their model faster and less memory 
usage with possible little loss in accuracy. 

The rest of the paper is divided into five sections. The first 
section gives background and previous work. In the second 
section, we explain data cube lattice for big data. The third 
section introduces the proposed structure and gives its 
implementation and performance analysis. Experiments and 
results are discussed in the fourth section. The final section 
concludes this paper by giving areas of future work. 

II. BACKGROUND AND PREVIOUS WORKS 

Time complexity of many data mining and machine 
learning algorithms depends on the number of instances in the 
dataset. For example, Support Vector Machine (SVM) has a 
time complexity of O(N3) in its quadratic solution and its best 
complexity of O(N2) using sequential minimal optimization 
(SMO) technique [5], where N is the number of instances. 
Similarly, conventional decision tree such as CART has a time 
complexity of O(NlogN) and similarity-based classifiers such 
as KNN has a time complexity of O(Ndk). These algorithms and 
other mining algorithms which may require multiple scans of 



data are computationally expensive when the number of 
instances is big [1]. To work on big data sets, many mining and 
learning algorithms need a preprocessing step to reduce the 
number of instances N albeit the cost of possible loss in 
accuracy. 

A recent study [6] shows proof that random sampling is the 
only technique commonly used by data scientists to quickly 
gain insights from a big dataset. However, it is hard to find a 
representative random sample for non-stationary big dataset 
because the values of attributes are too distinctive and not 
evenly distributed. 

Instance selection is one example of instance reduction 
techniques, that subsets the raw data set into a small group of 
instances. The subset techniques reduce the quality of data 
considerably and have a computational complexity of at least 
O(NlogN) [7] [8]. That makes instance selection unsuitable for 
big data sets. Note that instance selection is different from 
sampling. Sampling is a random selection from the raw dataset 
while instance selection considers instance correlation to select 
most informative instances [9]. 

Data aggregation is another technique that is used to reduce 
the number of instances in which similar instances are 
combined into one instance to eliminate redundancy. More 
advanced methods for aggregation include multidimensional 
data cube, which holds aggregated data in subspaces to support 
advanced analysis and decision making. It is widely used in 
business intelligence [10]. Han [11] proposed. On-line 
Analytical Mining (OLAM) which integrates mining models on 
top of a multidimensional data cube and OLAP engine to gain 
efficiency and scalability for data mining. Multidimensional 
data cube suffers from its big size, which grows exponentially 
when the number of dimensions increases [12]. A few 
techniques have been proposed as solutions for the problem. 
For example, iceberg cube [13] ignores data cells with fewer 
data instances than a user-defined threshold. Most cells in the 
data cube are sparse cells that represent empty regions in 
multidimensional data space, these cells can be removed for 
efficient mining and learning process. 

Data cells aggregated at different resolutions need to be 
linked for quick references. A specialized index structure is one 
of the major techniques that can be used as a solution for the 
problem [14] [15]. An index structure such as a tree has been 
used to overcome the inefficiency of the multidimensional data 
cube. Many variations of KD-tree [16], aR-tree [17], and R+-
tree [18] have been used for this purpose. However, K-DTree 
based methods are known for their complicated creation and 
slow performance with high dimensional data. More 
importantly, it does not support incremental update. aR-tree 
deals with overlapped regions which add a computational 
overhead that we do not need since we deal with non-
overlapped regions (as we will see in Section III), while R+-tree 
cannot deal with aggregated data. 

In addition, CF tree that used in BIRCH method [19] [20] 
and R* tree which used in DBSCAN method [21] [22] are other 
types of index structure. However, these methods are dedicated 
only for spatial data type and are query dependent. Once we 
implement the tree depending on a specific query (data mining 
task), we cannot use it again for other queries. Therefore, these 
indexing techniques need to scan the raw data repeatedly [23]. 

III. DATA CUBE 

In this paper, we consider a dataset of size N x d where N 
is the number of instances and d is the number of variables (N 
>> 2d). These variables take continuous numeric type values. 

Continuous data are common such as the data generated 
from sensors like temperature, air pressure, gyroscope, 
accelerometer, GPS, gas sensors and water sensors. 
Aggregating continuous data into a multi-resolution 
hierarchical structure is not a straightforward process because 
continuous data lacks concept hierarchy. 

We propose using a hierarchical multilevel grid 
summarization approach to reduce the number of data 
instances. Similar method has been used in spatial data mining 
[23] [24] and robotic mapping [25]. In this method, each 
dimension in the data set is divided into a limited number of 
equal width and non-overlapping regions (bins). Each region 
stores the summarization information of the raw data instances 
falling inside it. We labeled each region by giving it a number 
to distinguish between them. The multilevel structure forms a 
different granularity of data aggregation, where multiple 
regions at a lower level are grouped to form one region in the 
next higher level. We assume aggregation of each level to half 
of the size of its immediate lower level. This method provides 
a concept hierarchy for continuous data. 

The hierarchical multilevel grid on multiple dimensions 
can be assumed as a multidimensional data cube. Fig. 1 shows 
an example of a multidimensional data cube lattice generated 
from three dimensions, each has four levels of aggregation. 

 

Fig. 1. The lattice of multidimensional data cube that generated from three 
dimensions. 

Each node in the lattice is a cuboid that represents a single 
combination of aggregation levels (one level from each 
dimension). Starting from the bottom base cuboid (L4, L4, L4), 
which is a combination of lowest levels (levels 4) of dimensions 
1, 2 and 3 respectively, toward the top cuboid/Apex cuboid (L1, 
L1, L1), which is a combination of highest levels (levels 1) of 
dimensions 1, 2 and 3 respectively. Thus, the data cube lattice 
aggregates data in all combinations of dimensions levels 
between these two cuboids. 



Each cuboid contains a number of cells. Each cell in the 
data cube is defined and accessed by a multi-value index, which 
is a set of regions numbers (one region number from each 
dimension). For example, Fig. 2 shows a base cuboid of the 
cube lattice, we assume level 4 has 8 regions for each of the 
three dimensions, also it shows a cell indexed by < 1, 7, 8 > 
which is formed from regions 1,7 and 8 of dimensions 1, 2 and 
3 respectively. 

 

 
Fig. 2. The base cuboid (L4, L4, L4) 

IV. PROPOSED MULTI-RESOLUTION TREE STRUCTURE 

Storing aggregated data in a tree structure makes valuable 
tree operations such as search operation available. Searching 
the tree structure is faster and more efficient than searching the 
massive raw dataset. Apriori technique [26] is another example 
technique in which the features at high tree levels can be 
computed from features of low tree levels without the need to 
rescan the raw data. Parallel and distributed aggregation are 
also available using the tree structure. 

The proposed tree holds aggregated data in multi-
resolution levels. The lowest layer of data cube aggregation 
(L4, L4, L4) is stored in the tree leaves, and as we move toward 
the tree root the level of aggregation increase. The number of 
tree levels (denoted by h) is determined by the domain expert. 

The aggregation in the proposed tree is carried out on all 
dimensions at the same time. In other words, for the previous 
example in Section III, the tree can aggregate data to only 
cuboids (L1, L1, L1), (L2, L2, L2), (L3, L3, L3) and (L4, L4, 
L4). Thus, the data in any level of the tree is aggregated to 2-d 
of its size to the next upper level (because each dimension is 
assumed to be aggregated to half of its size to the next upper 
level). Note that, the apex cuboid (L1, L1, L1) is not generated 
as it does not benefit for mining purpose to aggregate all dataset 
in one node. Fig. 3 shows an example of a tree that aggregates 
data into two levels only, (h = 2), level two is the base cuboid 
(L4, L4, L4) and level one is the cuboid (L3, L3, L3). 

Each node except the root in the tree represents a non-
empty cell from the corresponding cuboid. The typical contents 
of an intermediate node include (I) statistical measures of 
aggregation of data instances in the node. These measures 

should be updated incrementally when new data instances join 
the data set (II) map table to its parent and children nodes. 

  

Fig. 3. Typical multi-resolution tree with two levels of aggregation and root 
node. Each tree node corresponds to a nonempty cell in the cuboid 

Each entry in the map table has a pointer pointing to the 
corresponding node, as shown in Fig. 4. The minimum number 
of children is 0 for leaf nodes and the maximum number of 
children is 2d. The map table of any leaf node has only a single 
entry that point to its parent node and no entries for children. 
The root node is the only node that does not have statistical 
measures. Thus, it does not represent any level of aggregation. 
It holds only the map table to the nodes of the highest level in 
the tree. We assume that the root node can be easily uploaded 
to memory (another assumption that the tree or part of it can be 
loaded easily to the memory). 

 

 

Fig. 4. Typical intermediate node content. (a) Incremental statistical features 
(b) Map table. 

A. Multi-indexing and Mapping 

A tree node, similar to a data cube cell, is a tuple over the 
attributes of dimensions, and its index has multiple values of 
the form < a1,l, a2,l, …, ad,l > where ap,l is a region number of 
dimension p at tree level l. We give each node a name which is 
the level number of the tree where the node resides, combined 
with its index. The node name is used to access and distinguish 
nodes of the tree. 

To build the tree efficiently from a data set, we have used 
a mapping function to map each raw data instance to its 
corresponding nodes in the tree structure. For each data 
instance, the mapping function generates multiple keys 



(indexes), one for each level in the tree. For example, if the tree 
has root and three levels, and the raw data has d dimensions, the 
mapping function generates three keys, as shown in Fig. 5. 

 

 

Fig. 5. Map function. 

Designing the map functions of complexity O (d) is crucial 
to ensure efficient and rapid mapping process. To satisfy this 
requirement the map function should be designed so that it does 
not depend on information that needs additional calculation. For 
example, when indexing a dimension depending on Z-score, 
this may need a map function that requires mean of the values. 
Getting the mean for streaming big data set is an overhead 
obstacle. We recommend design map function depending on 
information that is already available for the data set, for 
example, in HAR (Human Activity Recognition) we know 
previously some sensors like gyroscope could generate infinite 
real type data between -20 and 20 [27], so designing the map 
function depending on maxima and minima distance is 
appropriate and cost no overhead computation. 

For multiple resolution tree implementation, we need to 
provide the minimum value 𝑚𝑖𝑛𝑝 in the dimension p, the 

number of tree levels h and a matrix W where each element      
wp,l ϵ W is the regions width of dimension p at level l. Both h 
and W can be determined by a domain expert. Thus, for the 
above example the map function could map the data instance < 
v1, v2, …, vd > using Eq. (1) as map function: 

 

 

B. Sufficient Statistical Measures 

Aggregating many data instances in one node in the 
multiresolution tree structure needs more than taking the 
average of these objects. We need to calculate statistical 
measures that are expressive enough, small in size, common 
and incrementally updated from raw dataset to materialize the 
multiresolution tree structure. BIRCH [19] is an example of a 
data clustering algorithm that keeps three measures sum, 
squares sum, and the number of instances for each cluster of 
data. Inspired by BIRCH, we use the same measures because 
they are incremental and can be updated directly for each node 
providing the ability of top-down or bottom-up update of the 
multi-resolution structure. In addition, we added minimum and 
maximum values measures that denote the boundary values of 
the dimension region corresponding to this node. Table I shows 
the basic summarization measures computed for each node of 
the proposed structure. Note that sum, squares sum, minimum 
and maximum are computed for each dimension. Level number 
l, region number i and dimension p can be obtained from node 
name. 

TABLE I. SUMMARIZATION FEATURE MEASURES 

 

The measures in Table I can represent a wide spectrum of 
basic statistic features used for data mining. They can be used 
to calculate basic statistics like mean µ, variance σ2, and 
standard deviation σ incrementally, which are necessary for 
many other statistical measures, such as variables correlation 
and distribution. Table II shows the basic statistics that can be 
computed from measures in Table I. 

TABLE II. BASIC STATISTICAL MEASURES 

 

These measures provide enough information to compute 
cluster means, sizes and distance in different modes. For 
instance, Euclidean, Manhattan, L1 and L2 distances between 
cluster centers and average inter-cluster distances. This 
information is useful for clustering algorithms and similarity-
based learning. 

If class labels are included in the aggregated data, this 
would allow us to calculate class probabilities. Class 
probabilities are essential in building a classifier such as 
Bayesian classifiers, Hidden Markov Model (HMM), and in 
defining Entropy, Gain ratio and Gini index for building 
decision trees without accessing individual data objects. 

The dimension of class labels is a categorical attribute that 
has a finite number of values/labels. We can divide this 
dimension into regions where each region is a unique class 
label. There is no aggregation applied on the class attribute and 
it is maintaining the same regions at all levels of the proposed 
multi-resolution structure. Thus, each node is pure and has a 
summarization of data that belongs to only one class. To 
compute Eq. (2) the class probability P(C), where C is a specific 
class label, from the proposed tree structure, we need only one 
scan of any level in the tree and use count measure n combined 
with class attribute value C for each node in the level. 

 

 

Where q is the set of nodes that belong to a specific level 
in the tree, ni is the number of instances aggregated in node i 
while ni,C is the number of instances aggregated in node i that 
has class label C. 



C. Implementation and Performance Analysis 

The implementation of the proposed structure is a top-
down process, starting from the root node toward leaf nodes. To 
analysis the worst performance case of updating the structure 
when a new data instance arrives, we assume the data is 
scattered over all the regions space and no region left without 
data. Thus, each node in level h - 1 in the multi-resolution 
structure has the maximum 2d children of leaf nodes (level h). 
Providing the structure height h, and region width matrix W 
along with maximum and minimum values for each of the d 
dimensions, we can calculate the number of leaf nodes Nh: 

 
Where wp,h ϵ W, is the regions width for dimension p at tree 

level h. The values 𝑚𝑎𝑥𝑝  𝑎𝑛𝑑 𝑚𝑖𝑛𝑝 are the maximum and 

minimum values of dimension p respectively. 

In case class labels C is included in the structure, the 
number of nodes at level h is: 

 
The |C| is the cardinality of class labels dimension C. The 

cardinality equal to the number of distinct values of class labels. 

Each level is aggregated to 2-d of the size of its immediate 
lower level. Thus, the number of nodes in any intermediate 
level l depends on leaf level is: 

 
Then, the maximum total number of nodes in the 

multiresolution structure with one root node and h levels is: 

 
Although the size of a tree node is larger than the size of 

raw data instance, the space needed to store the proposed multi-
resolution tree structure is less than the space of storing the raw 
data because NTree << N and N, the number of instances in the 
raw data, is very big and increase over time due to streaming 
data. 

Algorithm 1 builds the multi-resolution tree structure with 
a single scan of input data. For a coming data instance, it starts 
using the map function to generate h index keys, one key for 
each level in the tree such as the example in Fig. 5. The 
algorithm then examines the root map table for an entry that 
matches the first key. If the entry is found, the algorithm calls 
its node using the corresponding pointer and then update its 
measures. In case the entry is not found, the algorithm creates a 
new node and a new entry in root map table to hold its key 
(same as the first key generated by map function). The 
algorithm then makes that entry pointing to the newly created 
node and updates its measures. The algorithm repeats this 
process until it reaches the leaf node. 

Fig. 6 explains Algorithm 1 using the same example from 
Fig. 5, the dotted curve represents the algorithm progress path 
from the root to leaf nods and only the red nodes are visited and 

uploaded to memory. These nodes are the root node and a single 
node from each level of the tree. 

 

 

Algorithm 1 is more efficient than a data cube because it 
avoids creating empty nodes intuitively, and thus it generates a 
smaller tree structure than a data cube. Also, it avoids search all 
nodes. Instead it calls only (h + 1) nodes and cost O (h + 1) disk 

operation. The worst case of this process cost 𝑂 (𝑁ℎ 2𝑑⁄ +
∑ 2(ℎ−𝑙)𝑑ℎ−1

𝑙=1 ) computation to update the tree due to arrive one 
data instance, where Nh /2d is the cost to search map table of the 

root node, and ∑ 2(ℎ−𝑙)𝑑ℎ−1
𝑙=1  is the cost to search the map tables 

of visited nodes. We visit one node at each level (levels 1 to h - 
1), the level h or leaf nodes will not be searched as they do not 
have children. Updating proposed tree using Algorithm1 is 
more efficient than updating CF tree in Birch algorithm which 
requires two passes of the tree. Top-Down pass to find the 
appropriate nodes and Bottom-Up pass to update these nodes. 



 

Fig. 6. Updating the multi-resolution tree 

V. EXPERIMENTAL EVALUATION 

In this section, we run several experiments on our proposed 
structure to speedup Naive Bayes classifier. Naive Bayes 
classifier is a simple and powerful data mining algorithm that is 
used in classification problems such as text classification and 
medical diagnosis. Given a training dataset of N instances in d 
dimensional space and each instance belongs to one of k 
different classes, Naive Bayes finds estimated class label ŷ Eq. 
(7) based on the Bayes theorem that used to compute class 
probability P(C) and assigns the class label Ck with the highest 
posterior probability to unclassified instance x. 

 

Naive Bayes assumes that the variables are independent 
and uses the normal distributed probability to calculate Eq. (8) 
the class probability of normally distributed variables. 

 

Naive Bayes classifier, working on raw data, scans all data 
instances to compute the conditional mean, variance and 
standard deviation that are required to compute the likelihood 
for continuous variables. This slows the training process for big 
dataset. 

In this experiment, we have generated several datasets of 
different sizes 104, 105, 106, 107, 2 x 107, 22 x 107, 23 x 107 and 
108 instances. Each dataset serves as a raw dataset and has two 
normally distributed continuous predictor variables and one 
response variable with two class labels 0 and 1. Each dataset 
has been split randomly into 80% training and 20% testing sets. 
We use the training set to implement the multiple resolution tree 
structure based on the following parameters values h = 4 and W 
= {0.1, 0.2, 0.4, 0.8}.  

First, we implement Naive Bayes classifier that uses the 
proposed multi-resolution tree as input to compute the 

conditional mean, variance and standard deviation from 
summarization features as in Table II and substitute them in the 
previous equation to get the probability of continuous variables. 

We then apply Multi-resolution Naive Bayes (MRNB) on 
the tree structures and compare it with the traditional Naïve 
Bayes algorithm (NB) applied on raw datasets. The results are 
given in Table III and show that our MRNB algorithm can 
achieve overall higher performance than NB in all datasets. 
MRNB consumes on average 25% less time than traditional NB 
and less memory since it can work on the higher level (level 1) 
of the tree which consists of a number of nodes N1 less than the 
number of instances in the raw dataset N1 << N. More 
importantly, it maintains the same accuracy of prediction as 
NB. 

TABLE III: TIME IN SECONDS FOR MRNB AND NB 

 

VI. CONCLUSIONS AND FUTURE WORKS 

We have developed a common multi-resolution indexing 
tree representation that maintains scalable and reliable 
summarization of both on-the-fly and historical big data. This 
structure is built once, updated incrementally, and used to 
reduce computation time and memory usage for mining and 
learning algorithms. We have developed effective techniques to 
create, organize, access and maintain an incremental update of 
the tree layers and contents. The structure summarization 
features provide the necessary information for many data 
mining and learning algorithms. We have implemented the 
Naive Bayes classifier to use the tree structure as input, and then 
tested it on several datasets. The results show that the algorithm 
consumes less time and memory when using the proposed 
multi-resolution tree than working on the raw data. 



Using this summarization structure by mining algorithm is 
more efficient than accessing raw data. However, traditional 
mining algorithms limited to work on a flat dataset, in which 
the data is organized in a matrix or CSV like file format. The 
change in the structure of raw data after aggregation into the 
multi-resolution tree structure makes it unavailable for 
traditional mining algorithms. Our future work will be setup to 
implement more data mining algorithms to accept multi-
resolution summarized tree structure as input and to use its 
summarized measures to estimate parameters of their models. 
Candidate methods include approximate similarity-based 
classifiers, Bayesian belief networks, conventional tree 
classification and online approximated Support Vector 
Machines (SVM). 
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