‘GMPA’- A Comparative Study of Graphene Based Patch for Performance and Parameters Enhancement of Antenna at Terahertz Frequency for Wireless Communications

Gaurav Tewari
Research Scholar
Dept. of Electronics and Communication Engineering
Sunrise University, Alwar, Rajasthan
Email id- gauravtewari1947@gmail.com

Prof. (Dr.) K. K. Saini
Research Supervisor
Dept. of Electronics and Communication Engineering
Sunrise University, Alwar, Rajasthan
Email id- profdrkkssaini@gmail.com

Abstract- The comparative analysis of microstrip feed traditional metallic rectangular patch antenna and novel “Graphene Microstrip Patch Antenna- GMPA” is been done. In this paper we used ‘Graphene material’ as a patch and silicon dioxide as a substrate material with a thickness of 1.8 µm and dielectric constant $\varepsilon_r=3.9$ to resonate at a frequency of 6 Thz. The return loss and gain of antenna is very much improved in comparison. The return loss of -48.35 dB and gain of 4.50 decibel is achieved including much improved impedance bandwidth of 12.83% during its operating frequency between 5.66 to 6.43 Thz. Simulation is performed by latest and world’s best Finite Element Method based ‘HFSS.18’ and ‘CST-Suite 16’ tools. Finally it is proved that graphene is one of the best alternative of metallic patches in present era.

Keywords- HFSS, CST, GMPA, CNT, FEM.

I. INTRODUCTION
Graphene is a novel material which is atomically thin form of hexagonal carbon and a great substitute for conventional metallic patches of patch based antennas [1]. It had came into attraction since publications of seminal papers in 2002 [2, 3]. Metallic patch era is more than five decade old. Several metallic materials like copper, silver, aluminum etc are vastly used, out of which copper is very general and mostly used for making ground and patches of microstrip patch antennas. Single layer of graphite crystal is called as graphene. It has pure covalent bonded carbon atoms which are one atom thick in form of honeycomb lattice. The single layer is detached from graphite and grown by cvd process [4]. Electrical and heat conduction properties of graphene are remarkably best along with optical and mechanical, as summarized in Table I [5,6,7]. The present generation requires keen advancement in field of wireless communications, whose possibility depends upon compact, cost effective, efficient and faster ultra broadband antennas [8,9]. For antenna based applications graphene exhibits highest carrier mobility: >100000 cm2 V$^{-1}$ S$^{-1}$ at room temp [10] which is 100 times greater than that of silicon [11]. The term terahertz defines frequency range between 300 GHz to 3THz [12]. Also at some places the range considered between 100 GHz to 10 THz [13]. For working in terahertz range devices should be much compact and miniaturized. Thus Microstrip patch antennas are best suited for this condition. Conventional metallic patch antenna using copper patch has several disadvantages like less gain, very low power handling capacity, huge narrow bandwidth, etc. [14]. Also very high resonant frequency is needed for even reducing few micrometer size of metallic patch antenna. Such frequency cause channel attenuation due to which there is severe difficulty in implementation of nano devices.
Table 1 Brief Summary of Intrinsic Properties Of Graphene

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation Velocity (cm/Sec)</td>
<td>4.5 x 10^3</td>
</tr>
<tr>
<td>Carrier mobility (cm^2/Vs)</td>
<td>> 100,000</td>
</tr>
<tr>
<td>Current density (A/cm^2)</td>
<td>~10^9</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m-K)</td>
<td>4800</td>
</tr>
<tr>
<td>Optical opacity (%)</td>
<td>2.3% per layer</td>
</tr>
<tr>
<td>Young’s modulus (Pa)</td>
<td>0.5-1 tera</td>
</tr>
</tbody>
</table>

Several intrinsic properties of graphene are shown in the Table-1 directs to the factor that graphene material is far very beneficial and great replacement of several metallic patch materials. The present research work shows exact mathematical calculation of conductivity of graphene material and clear analysis of several radiation parameters of GMPA using silicon dioxide as a substrate material which has dielectric constant $\varepsilon_r=3.9$ at 6 Terahertz frequency band. [15]

II. NOVEL GRAPHENE PATCH ANTENNA

In several papers we see rectangular patch antenna with conducting material as a patch placed on substrate with a metallic ground and microstrip line feeding [16]. The transmission line having quarter wavelength is used to match the patch matching the load with characteristic impedance. We have taken a rectangular shaped patch having length “ L_p”, thickness of substrate ‘silicon dioxide material’ is “h” with dielectric constant “ε_r” as shown in figure 1.a. The Graphene based microstrip patch antenna ‘GMPA’ is designed with micro strip line feeding technique on SiO2 substrate to be operated at 6 Thz Frequency band.

![GMPA Graphene Microstrip patch Antenna](image)

Fig 1- GMPA (Graphene Microstrip patch Antenna)

The length of following rectangular graphene patch antenna is “ L_p” and calculated by equation 1a which shows solution to find out Graphene’s surface conductivity. So we use following technique to find electrical conduction ability which is used for graphene sheets, also for resonant frequency “fr” the antenna is required with SPP dispersion relation.[17]

$$L_p = L + 2\partial l = \frac{v}{\beta} = \frac{v}{\frac{2}{f_o}}$$ \hspace{1cm} (1)

“L” is the length of antenna, ∂l is electrical fields penetration length which is outside the antenna β is the ‘wave number’ produced by Surface plasmon polaritons waves. Here we observe two things firstly graphene antenna resonates up to two orders of frequency which is much lower than metallic patches, secondly the pace of resonant frequency is slowly increase in graphene material as compared to several metallic nano patches as there is reduction in antenna size. The derivation of single layer graphene conductivity is done by Kubo formula which can be reduced when condition of ‘$\mu_c \gg \hbar \omega_c$’ satisfies. Usually ‘μ_T’ is graphene material fermi level and ω_c is frequency shown in equation 2 we see drude formulation here in its variable form.

$$\sigma = \frac{2e^2}{\pi h^2} KT \frac{b}{m} \log(Cosh \frac{\mu}{2KbTm}) \frac{1}{1 + \tau \omega J}$$ \hspace{1cm} (2)

T_m is temperature, τ is scattering time, K_b is Boltzmann constant, and e in the above eqn shows charge on electron. The condition $\mu_c \gg \hbar \omega_c$ is usually satisfied at low electromagnetic frequencies as we see $\mu_c > 0.05$ eV. At room temperature, equation (2) Thus we get the conductivity curves shown in Fig. 2, where different values of μ_c are assumed.[18]

While reaching near to Thz frequency band we see surface conductivity has a different nature, for this reason allowing the
beginning of surface plasmons polaritons at reduced level which is lesser than traditional materials at the THz range. Plasmons for ‘GMPA’ facilitate hidden cover to electromagnetic power at small wavelength balance and is capable to be stand with increment of standing voltage, offering an information because on a metal–dielectric line. Reaching closer to the terahertz frequency the surface conductivity has a drastically distinctive nature, for this reason permitting the beginning of surface plasmons polaritons at range lower than given obtained values. We see ‘Plasmons’ of graphene enable thoughtful cover of EM supply at high range frequency band. Thus managed by using software simulation and several formulations.

\[n_{\text{eff}}(\omega) = \sqrt{1 - \frac{4\omega}{\varepsilon_0\sigma(\omega)^2}} \]

(3)

Here \(\sigma(\omega) \) graphene conductivity, \(\varepsilon_0 \) is permittivity and \(\mu_0 \) is permeability of free space. Further study of graphene is done by Kubo formula as we saw previously in eqn 2 also for good propagation of surface plasmons polaritons wave in graphene patch this formula is used to obtain conductivity in optical regime [20]. There are two processes by which optical wave absorption in graphene can be studied firstly intraband carrier transitions and secondly interband carrier transitions shown in equation 4

\[\sigma(\omega) = \sigma_{\text{intra}}(\omega) + \sigma_{\text{inter}}(\omega) \]

(4)

Here \(\omega \) is photons angular frequency. The surface conductivity of graphene has two parts namely intra and inter bands.

III. SOFTWARE SIMULATION TOOLS USED

HFSS 18

Introduced in early 90’s HFSS is a software simulation tool used to design several types of microwave devices including antennas of several types and complex 3D geometrical structures. The H.F.S.S is basically a ‘High Frequency Structural Simulator’ which uses a numerical simulation method called Finite Element Method ‘FEM’. In this technique the whole design structure is divided into many smaller sub-sections which we call finite elements. HFSS uses ‘tetrahedra’ as finite elements and all its collection called a ‘mesh’.
A. Salient Features of HFSS Tool

- It creates fully parameterized cross segment arranging models having 2D and 3D architecture.
- It has intense drawing abilities to influence improved outline to structure.
- Its field understanding motor has great precision subordinate driven versatile arrangements.
- With its most capable processor for extraordinary knowledge into electrical execution.
- Advanced materials in its new version HFSS 18.
- It registers s-parameters and full-wave fields for any subjectively molded 3D structures.
- Its wideband frequency sweep has very fast action.
- Consist model with Library-including winding inductors, half, quarter, or octet symmetry designs.

IV. Graphene Modeling and Conductivity Formulation

The antenna modeling is done by using by 2 Dimensional surface conductivity formulation as derive in equation 5

$$\sigma(\omega, \mu_c, \tau, T_m) = -J \frac{q^2K T_m}{\pi h^2 (\omega - 2\tau T_m)} \times \left\{ \frac{\mu_c}{K_b T_m} + 2 \ln(e^{\frac{\mu_c}{K_b T_m}} + 1) \right\}$$

(5)

Where ‘\(\omega\)’ is angular frequency, ‘\(T_m\)’ is scattering rate also called TR timing, ‘\(\mu_c\)’ is its chemical potential ‘\(h\)’ is plank constant and ‘\(K_b\)’ is Boltzmann constant. The intraband relation gives higher accuracy for low Thz frequencies. When considered \(\mu_c = 0\) at room temperature of approx 300K we get following simplified equation

$$\sigma (\text{intra}) = J \frac{q^2 K_b}{\pi h^2 \tau} \left[2 \ln(2) \right]$$

(6)

Unit electron charge is ‘\(e\)’ and ‘\(h\)’ denotes plank constant with ‘\(\mu_c\)’ as chemical potential ‘\(T_m\)’ is rate of scattering and ‘\(K_b\)’ is Boltzmann constant.

Fig- 4 Graphene Patch Antenna Design with Microstrip line Feeding

The above figure demonstrates the design overview of novel “Graphene Microstrip Patch Antenna”- GMPA. It has rectangular patch made with graphene material having ‘\(L\)’ and ‘\(W\)’ namely as GMPA’S length and width, \(L_{11}\) is length and and \(W_{11}\) is width of microstrip line feeding. \(L_s\) and \(W_s\) as length and width of substrate. Here ‘\(SiO_2\)’ is used as substrate material. ‘\(h\)’ is the height, also called thickness of substrate used. Graphene material is also used as infinite ground plane of antenna.
Table 2 Parameters of Novel ‘GMPA’ designing

Table 2 demonstrates the different values for designing ‘Novel GMPA’ using graphene as its patch and having rectangular architecture of length $L = 10.71 \, \mu m$ and width $W=14.87 \, \mu m$ along with micro-stripline feeding. Substrate used is silicon dioxide (SiO2) having dielectric constant $\varepsilon_r = 3.9$ and having thickness $h = 1.8 \, \mu m$.

Feeding is given by simple microstrip line of dimension $L_1 = 8.595 \, \mu m$ and $W_1 = 2.664 \, \mu m$ as its length and width.

The substrate is made of silicon dioxide material having length $L_s = 27.9 \, \mu m$, Width $W_s = 66.67 \, \mu m$ and height $h=1.8 \, \mu m$.

![Graphene Patch Antenna Cross Sectional View](image)

Table 3 Several Measured Parameters

Fig 5 shows cross sectional 3D view of ‘GMPA’ along with substrate material and ground plane.

The substrate which is used here is Silicon Dioxide having dielectric constant of 3.9, it is also most efficient substrate material in present era having good radiation mapping quality.

![Graphene Patch](image)

Table 4 Comparative Analysis of Several Conventional Metallic Patches along with Copper and Graphene Patch Results
The following tables demonstrates comparative results of several parameters. Main comparative parameter is return loss which is very basic parameter of microstrip patch antenna design. We get return loss of -39.37 db with copper patch and -48.75db with our novel graphene patch showing decrement of 9.38db which is quite good decrease in return loss when graphene patch is taken. It shows impedance bandwidth of 12.83% with good gain of 5.60dbi with graphene patch in comparison with 4.20dbi of copper. Thus there is enhancement of 1.40dbi. The radiation efficiency is slightly decreased.

V. RESULT AND DISCUSSION

The antenna is parameterized and simulated on FEM based simulation software HFSS several results are obtained. The parameters of traditional copper patch antenna are compared with novel proposed graphene patch antenna minutely. When we take copper material as a patch we got return loss of -39.37db at approx 6Thz frequency. Comparing result with Graphene patch shows tremendous return loss of -48.75 db at 6Thz. Thus there is an decrement in return loss of 9.38 db, which is quite good comparative result.

![Fig-6 Return Loss Comparative Graph of Copper and Graphene Patch Parameters](image)

![Fig-7 Radiation Efficiency of Patch Antenna With Copper and Graphene as a Patch Material](image)

![Fig-8 Gain with Copper Patch and with Graphene Patches](image)
Fig 9- Red solid line and Blue dash line shows E&H-plane screening radiation patterns of the ‘Copper Patch Antenna’ at Terahertz Frequency Band.
VI. CONCLUSION

Thus finally we conclude that “GMPA” is not only novel but has drastic characteristic enhancement as compared with copper and other metallic patches. It gives more bandwidth, gain, less return loss in its comparison. It is best suites at higher frequency basically at Terahertz band. By its use we can get much electrical efficient patch antenna at nano scale design.

REFERENCES

www.amity.edu.in/ajcs
Tewari received his B.Tech degree in ‘Electronics and Communication Engineering’ from Galgotia’s College of Engineering and Technology, Gr.Noida in year 2011 and M.Tech degree in RF and Microwaves Engineering in year 2013. He is Research Scholar of Sunrise University, Alwar. He has received ‘Educational Excellence Award’ in the year 2017 by the hands of Hon’ble Governor of Goa Her Excellency Smt. Mridula Sinha Ji. Currently his name is nominated for ‘Dinkar Sahitya Ratn Sammaan’ to be given by Hon’ble President of India Sri Ram Nath Kovind Ji to 21 eminent persons in every five years. His research interest is on simulation, designing and fabrication of several types and shapes of patch antennas.

R. S. Yaduvanshi has overall 23 years of teaching and research experience. He is currently Professor in ECE Department of Ambedkar Institute of Advanced Communication Technologies and Research (AIACTR), Govt. of Delhi, India. He visited France for Radar Modernization as Senior Scientific Officer in Ministry of Defense. He is working on MHD projects currently. He had published twenty research papers in International Journals and Conferences. At present he is guiding eight Ph.D. students with good research outcomes.