GLOBAL TALENT SEARCH EXAMINATIONS (GTSE)

CLASS -XII

Max Marks: 80

MATHEMATICS

General Instructions: (Read Instructions carefully)

- 1. All questions are compulsory. First 15 minutes for reading instructions.
- 2. This paper contains **20 objective type questions**. Each question or incomplete sentence is followed by four suggested answers or completions. Select the one that is the most appropriate in each case and darken the correct alternative on the given answer-column, with a pencil or pen.
- 3. For each correct answer **4 marks** will be awarded and **1 mark** will be deducted for each incorrect answer.
- 4. No extra sheet will be provided.
- 5. Use of calculators & mobile is not permitted in examination hall.
- 6. Use of unfair means shall invite cancellation of the test

Name of the Student	:
Roll No.	•
Centre	:
Invigilator's Signatur	e:
AMITY INS	TITUTE For Competitive Examinations
• E-25, D • B-1/623, Main Naj • Amity Inter • Amity Ca	efence Colony, New Delhi - 110024. Ph.: 24336143, 24336144. afgarh Road, Janakpuri, New Delhi - 110058. Ph.: 25573111 / 12 / 13 / 14. national School, Mayur Vihar, Phase-I Ext., Delhi. Ph.: 22710588.

• Amity International School, Sector-46, Gurgaon, Haryana. Ph.: 95124-3240105.

		Матне	MATICS		
۱.	Let $f(x) = \int_{0}^{2} x - t dx$	t ($x > 0$), then minimum	value of $f(x)$ is		
	(a) 1	(b) 2	(c) 0	(d) none of these	
2.	A function $f: \mathbb{R} \to \mathbb{R}$ if (a) $f(x)$ will have rep (b) $f(x)$ will have no (c) $f(x)$ will have so (d) none of these	is such that $ f(x) $ is different peated roots only n-repeated roots only me roots repeated and so	rentiable. Then ome roots non-repeated		
•	Which of the following (a) $\cos(x) + x $	g functions is differentiable (b) $\cos(x) - x $	e at $x = 0$? (c) $\sin(x) - x $	(d) $\sin(x) + x $	
•	Value of $\lim_{x \to 0} \left[(\sin x)^1 \right]$	$\frac{1}{x} + \left(\frac{1}{x}\right)^{\sin x}$ is			
	(a) 1	(b) 0	(c) -1	(d) 2	
•	The lines $\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}$, $\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$ are coplanar, and the equation the plane in which they lie is				
	(a) $x + y + z = 0$	(b) $x - y + z = 0$	(c) x - 2y + z = 0	(d) $x + y - 2z = 0$	
•	$\int_{-1}^{0} \tan^{-1}(1+x+x^2) dx$ is	s equal to			
	(a) log 2	(b) $\log \frac{1}{2}$	(c) $\pi \log 2$	(d) $\frac{\pi}{2}\log\frac{1}{2}$	
		- : Rough	Space : -		

Amity Institute For Competitive Examinations

Mathematics-XII

7.	If the value of the integr	al $\int_{1}^{2} e^{x^{2}} dx$ is α , then the v	alue of $\int_{e}^{e^4} \sqrt{\log x} dx$ is				
	(a) $e^4 - e - \alpha$	(b) $2e^4 - e - \alpha$	(c) $2(e^4 - e) - \alpha$	(d) none of these			
8.	Let the unit vectors a and b be perpendicular and the unit vector c be inclined at an angle θ to both a and b . If c = α a + β b + γ (a × b)						
	(a) $\alpha = \beta$	(b) $\gamma^2 = 1 + 2\alpha^2$	(c) $\beta^2 = -\cos 2\theta$	(d) none of these			
9.	The distance between the	e line $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda$	$(\mathbf{i} - \mathbf{j} + 4\mathbf{k})$ and the plane	$\mathbf{r} \cdot (\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = 5$ is			
	(a) $\frac{10}{3\sqrt{3}}$	(b) $\frac{10}{3}$	(c) $\frac{10}{9}$	(d) none of these			
10.	The angle between the li	times $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = 2$	2 and $\frac{x-1}{1} = \frac{2y+3}{3} =$	$\frac{z+5}{2}$ is			
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) none of these			
11.	If a , b , c are unit vector		$ \mathbf{c} - \mathbf{a} ^2$ does not exce	ed			
	(a) 4	(b) 9	(c) 8	(d) 6			
12.	If λ is a root of the equa	tion $x^2 + 3x + 1 = 0$, then	$\tan^{-1}\lambda + \tan^{-1}(1/\lambda)$ is				
	(a) π/2	(b) $-\pi/2$	(c) π/3	(d) none of these			
13.	3. If $0 < c \le 1$, then range of the function $f(x) = \frac{x^2 + 2x + c}{x^2 + 4x + 3c}$ is						
	(a) $(0, \infty)$	(b) (−∞, 0)	(c) $(-\infty, \infty)$	(d) none of these			
14.	Let $f(x) = (x - 1)^p (x - 2)^{-1}$	2) ^{<i>q</i>} where $p > 1$, $q > 1$, each $q > 1$	h critical point of $f(x)$ is	a point of extremum when			
	(a) $p = 3, q = 4$	(b) $p = 4, q = 2$	(c) $p = 2, q = 3$	(d) none of these			
- : Rough Space : -							

Mathematics-XII

15.

16.

17.

18.

19.

20.

The equation of the line through the point **a**, parallel to the plane **r** . **n** = q and perpendicular to the line **r** = **b** + *t***c** is
(a) **r** = **a** +
$$\lambda$$
 (**n** × **c**) (b) (**r** - **a**) · (**n** × **c**) = 0 (c) **r** = **b** + λ (**n** × **c**) (d) none of these
If *f*(*x*) and *g*(*x*) are functions such that *f*(*x* + *y*) = *f*(*x*) *g*(*y*) + *g*(*x*)*f*(*y*), then

$$\begin{vmatrix} f(\alpha) & g(\alpha) & f(\alpha + \theta) \\ f(\beta) & g(\beta) & f(\beta + \theta) \\ f(\gamma) & g(\gamma) & f(\gamma + \theta) \end{vmatrix} is independent of
(a) α (b) β (c) γ (d) all of α , β , γ , θ
If $I_n = \int_1^r (\log x)^n dx$, $n \in \mathbb{N}$, then the value of $I_n + nI_{n-1}$ is
(a) *n* (b) *ne* (c) *e* (d) none of these
Let $f(x) = \frac{ax}{x+1}$, $x \neq -1$. Then, for what values of α , is $f(f(x)) = x$?
(a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d) -1
Let a set S contain *n* elements and A, B be any two subsets of S. The probability that number of
elements in the set $A - B$ is one, is
(a) $\frac{n \cdot 3^{n-1}}{4^n}$ (b) $\frac{4^n - 3^n}{4^n}$ (c) $\frac{3^n}{4^n}$ (d) none of these
f is any function from A to B where A = {1, 2, 3,*m*} and B = {1, 2, 3,*n*}, then the probability
that *f* is onto, is
(a) $\frac{n \cdot P_n}{n^m}$ (b) $\frac{n \cdot C_n}{n^m}$$$

୵ଽୄୄୄ୵ଽୄୄୄ୵ଽୄୄୄ

Mathematics Class-XII Answers

1.	(a)	2.	(a)	3.	(c)	4.	(a)	5.	(c)
6.	(a)	7.	(b)	8.	(a)	9.	(a)	10.	(a)
11.	(b)	12.	(b)	13.	(c)	14.	(b)	15.	(a)
16.	(d)	17.	(c)	18.	(d)	19.	(a)	20.	(c)

Solutions Class XII

Sol.: 1. (a):

$$f(x) = \int_{0}^{2} |x-t| dt;$$
if $0 < x < 2$,

$$f(x) = \int_{0}^{2} |x-t| dt$$

$$= \int_{0}^{x} |x-t| dt + \int_{x}^{2} |x-t| dt$$

$$= \int_{0}^{x} (x-t) dt + \int_{x}^{2} (t-x) dt$$

$$= \int_{0}^{x} x dt - \int_{0}^{x} t dt + \int_{x}^{2} t dt - \int_{x}^{2} x dt$$

$$= x \int_{0}^{x} dt - \frac{x^{2}}{2} + 2 - \frac{x^{2}}{2} - x \int_{x}^{2} dt$$

$$= x^{2} - \frac{x^{2}}{2} + 2 - \frac{x^{2}}{2} - x (2-x)$$

$$= 2 - 2x + x^{2}$$

$$= (x-1)^{2} + 1$$
so minimum value of $f(x) = 1$
If $x \ge 2$,

$$f(x) = \int_{0}^{2} |x-t| dt = \int_{0}^{2} (x-t) dt$$

$$= \int_{0}^{2} x dt - \int_{0}^{2} t dt$$

$$= x \int_{0}^{2} dt - 2$$

$$= 2x - 2$$
so minimum value of $f(x) = 2$ at $x = 2$

so minimum value of f(x) = 2 at x = 2. so overall minimum value of f(x) = 1

Sol.: 2. (a):

$$|f(x)| \text{ is differentiable}$$

$$\Rightarrow \lim_{h \to 0^+} \frac{|f(a+h)| - |f(a)|}{h} = \lim_{h \to 0^+} \frac{|f(a-h)| - |f(a)|}{-h} = \text{finite } \forall a \in \mathbf{R}$$
If $f(a) = 0$

$$\Rightarrow \lim_{h \to 0^+} \frac{|f(a+h)|}{h} = \lim_{h \to 0^+} \frac{|f(a-h)|}{-h}$$

$$\Rightarrow \lim_{h \to 0^+} \frac{|f(a+h)|}{h} = \lim_{h \to 0^+} \frac{|f(a-h)|}{-h} = 0$$

$$\Rightarrow \lim_{h \to 0^+} \frac{f(a+h)}{h} = \lim_{h \to 0^+} \frac{f(a-h)}{-h} = 0$$

$$\Rightarrow f'(a) = 0$$

$$\Rightarrow f'(a) = 0$$

$$\Rightarrow f(x) \text{ will have repeated roots only}$$
Sol.: 3. (c): At $x = 0$, for the function $\sin(|x|) - |x|$,
R.H.D. $= \lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h}$
 $= \lim_{h \to 0^+} \frac{\sin |h| - |h| - 0}{h}$
 $= \lim_{h \to 0^+} \frac{\sin h - h}{h}$
 $= \lim_{h \to 0^+} \frac{f(0-h) - f(0)}{-h}$
L.H.D. $= \lim_{h \to 0^+} \frac{f(0-h) - f(0)}{-h}$
 $= \lim_{h \to 0^+} \frac{\sin h - h}{h}$
 $= \lim_{h \to 0^+} 1 - \frac{\sin h}{h} = 0$
So $\sin(|x|) - |x|$ is differentiable at $x = 0$.
Sol.: 4. (a): $\lim_{x \to 0} (\sin x)^{1/x} = 0$ (0° form)
Let $y = \lim_{x \to 0} (\frac{1}{x})^{\sin x}$
 $\Rightarrow \log y = \lim_{x \to 0} \sin x \log(\frac{1}{x})$

$$= \lim_{x \to 0^{-1}} -x \log x$$

Putting
$$\log x = -z \implies x = e^{-x}$$

 $\log y = \lim_{x \to 0} -x \log x$
 $= \lim_{z \to \infty} \frac{z}{e^z} = 0$
 $\Rightarrow y = 1$
Sol.: 5. (c): $\frac{x - (a - d)}{a - \delta} = \frac{y - a}{a} = \frac{z - (a + d)}{a + \delta} \qquad ...(i)$
 $\frac{x - (b - c)}{\beta - \gamma} = \frac{y - b}{\beta} = \frac{z - (b + c)}{\beta + \gamma} \qquad ...(ii)$
Normal vector to the plane is given by
 $\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a - \delta & a & a + \delta \\ \beta - \gamma & \beta & \beta + \gamma \end{vmatrix} = \begin{vmatrix} \mathbf{i} + \mathbf{k} - 2\mathbf{j} & \mathbf{j} & \mathbf{k} \\ 0 & a & a + \delta \\ 0 & \beta & \beta + \gamma \end{vmatrix}$
 $\Rightarrow \mathbf{n} = (\mathbf{i} + \mathbf{k} - 2\mathbf{j})$
Equation of plane is
 $x - 2y + z = k$
as plane passes through $(a - d, a, a + d)$
 $\Rightarrow k = 0$
 \Rightarrow Plane is $x - 2y + z = 0$
Sol.: 6. (a): $I = \int_{-1}^{0} \tan^{-1}(1 + x + x^2) dx$
 $x = -t$
 $= \int_{0}^{1} \tan^{-1}(1 - t(1 - t)) dt$
 $= \int_{0}^{1} \left[\frac{\pi}{2} - \cot^{-1}(1 + t(t - 1))\right] dt$
 $= \int_{0}^{1} \left[\frac{\pi}{2} - \cot^{-1}(1 + t(t - 1))\right] dt$
 $= \frac{1}{\sqrt{2}} \left[\frac{\pi}{2} - \cot^{-1}(1 + t(t - 1))\right] dt$
 $= \frac{\pi}{2} - \int_{0}^{1} \tan^{-1}(t) dt + \int_{0}^{1} \tan^{-1}(t - 1) dt$

k $+\delta$ +γ

$$= \frac{\pi}{2} - 2\int_{0}^{1} \tan^{-1}(t) dt$$

$$\int_{0}^{1} \tan^{-1}(t) dt = \frac{\pi}{4} - \frac{1}{2} \log 2$$

$$I = \frac{\pi}{2} - 2\left[\frac{\pi}{4} - \frac{1}{2} \log 2\right]$$

$$= \log 2$$
Sol: 7. (b): Let $I = \int_{e}^{e^{2}} \sqrt{\log x} dx$
Put $\log x = t^{2}$

$$\Rightarrow x = e^{2}$$

$$\Rightarrow dx = e^{2} \cdot 2t dt$$
Sol. 8. (a): $\mathbf{c} = (a + \beta \mathbf{b} + r(\mathbf{a} \times \mathbf{b}))$

$$\Rightarrow \mathbf{c} \cdot \mathbf{a} = a = \cos \theta$$

$$\mathbf{c} \cdot \mathbf{b} = \beta = \cos \theta$$
Sol.: 9. (a): $(\mathbf{i} - \mathbf{j} + 4\mathbf{k}) \cdot (\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = 1 - 5 + 4 = 0$
So line is parallel to the plane.
The plane can also be written as $x + 5y + z = 5$
The distance of point $(2, -2, 3)$ from plane $= \left| \frac{2 + 5 \times (-2) + 3 - 5}{\sqrt{1^{2} + 5^{2} + 1^{2}}} \right| = \frac{10}{3\sqrt{3}}$
Sol: 10. (a): Angle between lines = angle between their direction vectors
So $\cos \theta = \frac{(31 - 2\mathbf{j} + 0\mathbf{k}) \cdot (\mathbf{i} + (3/2)\mathbf{j} + 2\mathbf{k})}{(3 - 2\mathbf{j} + 0\mathbf{k}) ||\mathbf{i} + (3/2)\mathbf{j} + 2\mathbf{k}|}$

$$= 0$$

$$\Rightarrow \theta = \pi/2$$
Sol: 11. (b): $||\mathbf{a} + \mathbf{b} + \mathbf{c}|^{2} > 0$

$$\Rightarrow ||\mathbf{a}|^{2} + ||\mathbf{b}|^{2} + ||\mathbf{c}|^{2} + 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) \ge 0$$

$$\Rightarrow \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} \ge -3/2$$

Now, $|\mathbf{a} - \mathbf{b}|^2 + |\mathbf{b} - \mathbf{c}|^2 + |\mathbf{c} - \mathbf{a}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2) - 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) \le 6 + 3 = 9$
Sol: 12. (b): $\lambda = \frac{-3 \pm \sqrt{5}}{2} < 0$
So, $\tan^{-1}\lambda + \tan^{-1}(1/\lambda) = \tan^{-1}\lambda - \tan^{-1}(-1/\lambda) = \tan^{-1}\lambda - \cot^{-1}(\lambda) = \tan^{-1}\lambda - \cot^{-1}(\lambda) = \tan^{-1}\lambda - \cot^{-1}(\lambda) = \tan^{-1}\lambda + \cot^{-1}\lambda - \pi = \frac{\pi}{2} - \pi$
 $= \frac{-\pi}{2}$
Sol: 13. (c): $y = \frac{x^2 + 2x + c}{x^2 + 4x + 3c}$
 $\Rightarrow y(x^2 + 4x + 3c) = x^2 + 2x + c$
 $\Rightarrow x^2(y - 1) + 2x(2y - 1) + c(3y - 1) = 0$
Since $x \in \mathbf{R}, D \ge 0$
 $D = 4((2y - 1)^2 - (y - 1)(3y - 1)c] \ge 0$
 $\Rightarrow (4 - 3cy)^2 - 4y(1 - c)(1 - c) \ge 0$
Now, $4 - 3c \ge 0$ and $D = 16(1 - c)^2 - 4(1 - c)(4 - 3c)$
 $= 4(1 - c)(4(1 - c) - 4 + 3c]$
 $= -4(1 - c)c \le 0$
Sol: 14. (b): $f(x) = (x - 1)^x (x - 2)^x$
 $\Rightarrow f'(x) = (x - 1)^{y'(x - 2)^x}$
 $\Rightarrow f'(x) = (x - 1)^{y'(x - 2)^x}$
 $\Rightarrow f'(x) = (x - 1)^{y'(x - 2)^x}$
Sol: 15. (a): Let the direction vector of required line be d. Then since line is parallel to plane $\mathbf{r} \cdot \mathbf{n} = q$ and perpendicular to line $\mathbf{r} = \mathbf{b} + \mathbf{r}, \mathbf{d}$ is perpendicular to both \mathbf{n} and \mathbf{c} .
 $\Rightarrow d = \mathbf{n} \times \mathbf{c}$
 $\Rightarrow equation of line is $\mathbf{r} = \mathbf{a} + \lambda(\mathbf{n} \times \mathbf{c})$$

Sol.: 16. (d):

$$\begin{vmatrix} f(\alpha) & g(\alpha) & f(\alpha + \theta) \\ f(\beta) & g(\beta) & f(\beta + \theta) \\ f(\gamma) & g(\gamma) & f(\gamma + \theta) \end{vmatrix} = \begin{vmatrix} f(\alpha) & g(\alpha) & f(\alpha)g(\theta) + g(\alpha)f(\theta) \\ f(\beta) & g(\beta) & f(\beta)g(\theta) + g(\beta)f(\theta) \\ f(\gamma) & g(\gamma) & f(\gamma)g(\theta) + g(x)f(\varphi) \end{vmatrix}$$

$$(since $f(x + y) = f(x) g(y) + g(x) f(y)$

$$= \begin{vmatrix} f(\alpha) & g(\alpha) & f(\alpha)g(\theta) \\ f(\beta) & g(\beta) & f(\beta)g(\theta) \\ f(\beta) & g(\beta) & f(\beta)g(\theta) \\ f(\gamma) & g(\gamma) & f(\gamma)g(\theta) \end{vmatrix} + \begin{vmatrix} f(\alpha) & g(\alpha) & g(\alpha)g(\alpha) \\ f(\beta) & g(\beta) & g(\beta) & g(\beta)g(\theta) \\ f(\gamma) & g(\gamma) & f(\gamma) & f(\gamma) \\ f(\beta) & g(\beta) & g(\beta) & g(\beta) & g(\beta) \\ f(\gamma) & g(\gamma) & f(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) & g(\gamma) g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma) & g(\gamma) \\ g(\gamma) & g(\gamma)$$$$

Sol.: 19. (a): For every element, there are 4 options

- (1) in A alone (2) in B alone
- (3) in A and B both (4) in neither A nor B

Total number of ways $= 4^n$

If number of element in set A-B is one, then choose that one element in ${}^{n}C_{1}$ ways, put it in A and not in B.

Now for remaining (n - 1) elements, there are 3 options.

Number of ways = 3^{n-1}

 \Rightarrow Favourable ways = $n \cdot 3^{n-1}$

so probability = $\frac{n.3^{n-1}}{4^n}$

Sol.: 20. (c): Number of onto functions $= n^m - {}^nC_1(n-1)^m + {}^nC_2(n-2)^m - {}^nC_3(n-3)^m + \dots + (-1)^{n-1}{}^nC_{n-1}$ by principle of inclusion-exclusion Total number of functions $= n^m$.