NAME	Dr. Shashi Sharma	-
DESIGNATION	Associate professor	E
EMAIL ID	ssharma@amity.edu	20
CONTACT NUMBER	9999310413	E A
RESEARCH INTERESTS	Microbial production of bioproducts, enzyments, industrial applications; Green approximation of toxic pollutants, Nanotect Green formulations for skin care	mes and bach for hnology,

EDUCATIONAL QUALIFICATIONS:

Name of College / University	Degree	Year
Kanpur university	MSc	1996
Harcourt Butler Technological Institute (HBTI), Kanpur	M.Tech	1998
Delhi University South Campus, New Delhi	Ph.D	2004

Title of Ph.D. thesis: Production, Purification, Characterization and applications of tannase from *Aspergillus niger* and *Penicillium variable*

EXPERIENCE (in chronological order):					
	Designation	Type of post held (teaching/		Name of the Institute	Year (From –
			research)		To)
	Associate		Teaching / Research	Amity Institute of	1 st September,
	Professor			Biotechnology, Noida	2022–till date
	Assistant Prof.		Teaching / Research	Amity Institute of	18 th July, 2011 –
				Biotechnology, Noida	August, 2022
	Research	Cloning	, Expression and purification	School of	May 2007 –
	Associate	of DNA	Gyrase subunits A and B	Biotechnology	July 2007
		from My	ycobacterium tuberculosis	Jawaharlal Nehru	
		genome		University, New Delhi	
	Scientist	Optimiz	ation and upscale production	Institute of Himalayan	Oct, 2004 -
	Fellow	of ther	apeutic protein Superoxide	Bioresource	Nov,2006
		Dismuta	ase (SOD) from recombinant	Technology, CSIR,	
		E. coli i	in a 16 L Applikon Biogentek	Palampur, H.P	
		Bioreac	tor		
	Project	CSIR co	ollaborative project of NII and	National Institute of	1998-1999
	Associate	ICGEB	entitled "Glycosylinositol	Immunology (NII),	
		phospho	olipids of Entamoeba	New Delhi	
		histolyti	ca: Identification and		
		Structur	al Characterization"		
N	o. of Ph.D. stude	ents	Completed -2		
SI	upervised		Ongoing - 3		
No. of Post-Doc NIL					
No. of M.Tech. Students		udents			
supervised:			15		
No. of B.Tech. Students		udents			
supervised:			125		
PUBLICATIONS		5	1. Wiridula Chaturvedi, Navpreet Kaur, Pattanathu KSWI Rahman & Shashi		
(mention total no. here)		ere)	Sharma (2024). Solubilization and enhanced degradation of benzene		

	phenolic derivatives - Bisphenol A/ Triclosan using a biosurfactant producing white rot fungus <i>Hypocrea lixii</i> S5 with plant growth promoting traits. <i>Frontiers in Microbiology</i> Vol. 15 - 2024 doi: 10.3389/fmicb.2024.1433745 (I.F: 4)
	 Mridula Chaturvedi, Navpreet Kaur, Christine Jeyaseelan, Mika Sillanpää, Saleh Al Farraj & Shashi Sharma (2024). Composites of sodium alginate based - Functional materials towards sustainable adsorption of benzene phenol derivatives - Bisphenol A/Triclosan. <i>Environmental Research</i> Vol 255, 15th Aug 2024, 119192. <u>https://doi.org/10.1016/j.envres.2024.119192</u> (I.F: 7.7).
	3. Chaturvedi M, Joy S, Gupta RD, Pandey S and Sharma S (2023) Endocrine disrupting chemicals (EDCs): chemical fate, distribution, analytical methods and promising remediation strategies – a critical review. <i>Environmental Technology Reviews</i> Vol. 12, (1), 286–315. <u>https://doi.org/10.1080/21622515.2023.2205026 (cite score</u> : 5.3).
	 4. Molecular Mapping of Biofortification Traits in Bread Wheat (<i>Triticum aestivum</i> L.) Using a High-Density SNP Based Linkage Map. <i>Genes</i> 2023, 14, 221. <u>https://doi.org/10.3390/genes14010221</u> (IF: 4.414).
	5. Vasudha Jadon; Deepshikha Dixit; Karikalan Jayaraman ; Kusuma Kumari Panda; Shashi Sharma; Hari Krishna; Pradeep Kumar Singh and Gyanendra Pratap Singh (2022) Evaluation of synthetic hexaploid wheat (Triticum aestivum) derived RILs for kernel traits. <i>Indian Journal of Agricultural Sciences</i> 92(10), 1237-1241. https://doi.org/10.56093/ijas.v92i10.125217.
	6. Joy, S., Khare, S.K., Sharma, S . (2020) Synergistic extraction using sweep-floc coagulation and acidification of rhamnolipid produced from industrial lignocellulosic hydrolysate in a bioreactor using sequential (fill-and-draw) approach. <i>Process Biochemistry</i> Vol. 90, 233-240. https://doi.org/10.1016/j.procbio.2019.11.014 (I.F: 4.885).
	7. Joy S., Rahman P.K.S.M., Khare S.K., Soni S.R., Sharma S . (2019) Statistical and sequential (fill-and-draw) approach to enhance rhamnolipid production using industrial lignocellulosic hydrolysate C6 stream from <i>Achromobacter</i> sp. (PS1). <i>Bioresource Technology</i> 121494. (I.F: 11.8).
٤	3. Joy S., Rahman P.K.S.M., Khare S.K., Sharma S . (2019) Production and characterization of glycolipid biosurfactant from <i>Achromobacter</i> sp. (PS1) isolate using one-factor-at-a- time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues. <i>Bioprocess Biosystems Engineering</i> doi: 10.1007/s00449-019-02128-3. (I.F: 3.434).
ç	9. Joy S., P.K.S.M Rahman., Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. <i>Chemical</i>

	Engineering Journal 317, 232–241. (I.F. 16.74).
	10. Sharma S and Saxena R. K (2012). Evaluation of the versatility of the tannases produced from <i>Aspergillus niger</i> and <i>Penicillium variable</i> with respect to gallic acid production gallate ester synthesis, animal feed improvement, tannery effluent degradation and tannin stain removal. <i>Research in Biotechnology</i> 3(5): 09-20, ISSN: 2229.
	11. Sharma S , Agarwal L & Saxena R.K (2007). Statistical optimization of tannase production from <i>Aspergillus niger</i> under submerged fermentation. <i>Indian Journal of Microbiology</i> 47(2): 132-138) https://doi.org/10.1007/s12088-007-0026-6 (I.F: 2.461).
	12. Sharma S, Agarwal L & Saxena R.K. (2008). Purification, Immobilization, Kinetics and Characterization of tannase from <i>Penicillium variable</i> . <i>Bioresource Technology</i> 99, 2544-2541(I.F: 11.8) <u>https://doi.org/10.1016/j.biortech.2007.04.035</u> .
	13. Saxena S & Saxena R.K (2004). Statistical optimization of tannase production from <i>Penicllium variable</i> using fruits (Chebulic myrobalan) of <i>Terminalia chebula</i> . <i>Biotechnology Applied Biochemistry</i> 39: 99-106 https://doi.org/10.1042/ba20030097 (I.F: 2.724)
	Book Chapters:
	1. R.K. Saxena, L. Agarwal, K.Dutt, Shashi Sharma et al (2007)."Potential of enzymes in therapeutic" In Micro for Human Life (Eds Ajit Verma). I.K. International Pvt. Ltd, New Delhi ,pp 577-588.
	 R.K. Saxena, Rani Gupta, Shashi Saxena and Ruchi Gulati (2001). "Role of Fungal Enzymes in Food Processing". In Applied Mycology and Biotechnology, Vol 1, 353- 386. S. Joy, T. Butalia, S. Sharma, P.K.S.M. Rahman, Biosurfactant producing bacteria from hydrocarbon contaminated environment, in: K. Heimann, O.P. Karthikeyan, S.S. Muthu (Eds.), Biodegradation and Bioconversion of Hydrocarbons, Springer, Singapore, 2017, pp. 259–305.
PATENTS (total no.)	One submitted
	1.Hydrocarbon degradation and concomitant biosurfactant production from extremophilic micro-organisms using renewable sources with application as antimicrobial agent and in enhanced oil recovery. SERB, DST; Rs 23,60,000 (2013-2016)- PI
RESEARCH PROJECTS	2. Process development, purification and antimicrobial applications of bacterial biosurfactant (CSIR) Rs 9,13,600- As project mentor to SRF
Completed: (<i>total no.</i>) Ongoing: (<i>total no.</i>)	3.Enhanced bioremediation of pesticide contaminated crop fields of Punjab using biosurfactant producing concomitant pesticide degrading microbial consortium with plant growth promoting traits. Core Research Grant (CRG) SERB, DST; Rs 38,06,264 (2021-2024)- PI
	4. In Silico biodegradation prediction of White rot fungal laccases, surfactant with Endocrine Disrupting Chemicals – Bisphenol A/Triclosan-

	Rs 18,60,200 -2022-2025- As project mentor to SRF 5.Exploration of beneficial indigenous rhizobacteria and their management in the field for growth promotion and stress tolerance Core Research Grant SERB, DST; (2022-2025) -Co-PI
AWARDS & HONOURS/ DISTINCTIONS	 Received honorarium for module write up "Bioprocess Engineering" for e – PG -Pathshala, UGC – a MHRD project under its national mission through ICT (NME-ICT). Awarded Young Scientist under start up young scientist scheme- Dept. of Science and Technology (DST), New Delhi, India- 2013. Awarded the Senior Research Fellowship (SRF) from CSIR for three years from 2000 – 2003 Submitted 12 sequences of biosurfactant producing bacteria; 23 of pesticide degrading bacteria & 2 of white rot fungus
MEMBERSHIP with Professional/ Academic bodies	AMI, Biological Engineering Society, Society for Biotechnologists